

(Club de Investigación Tecnológica)

Legacy Transformation

Prepared by: Declan Good
August 2002

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Since 1988 the Technology Research Club (Club de Investigación Tecnológica) has been carrying out
applied research on the applications and implications of IT in organizations in Costa Rica. To date the
Club has 60 members organizations, the most forward looking and successful private and public
organizations in the country. This is the first report written in English and to be made publicly available,
it is the 33rd research report. For more information on the Club, its members, the latest activities, as
well as a complete list of research reports, visit www.cit.co.cr,

Edited and published by
Club de Investigación Tecnológica S.A. All rights reserved.

Additional free copies from leda@cit.co.cr or www.artinsoft.com
San José, Costa Rica

mailto:leda@cit.co.cr

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

About the Author

Declan Good has many years experience in maximising value from technology
investment. At one time head of computer planning and research at the Canadian
Customs and Excise, his subsequent career has focused on technology investment and
technical architecture projects in both Canada and the United Kingdom.

He joined management consultants Woods Gordon in Ottawa (now Ernst & Young) after
leaving the Canadian Government, and later worked with IT strategy consultants Butler
Cox in the United Kingdom. He has been an Independent Consultant since 1992. Declan
has degrees in engineering from Carleton University, Ottawa, and University College,
Dublin. He can be reached at declan_good@compuserve.com

Acknowledgements

This research project was carried out in the United Kingdom for the Technology Research
Club (Club de Investigación Tecnológica) with sponsorship from ArtinSoft.

I would like to thank Carlos Araya and Roberto Sasso of ArtinSoft for their help and
encouragement in completing the research. Significant contributions were made by Donal
Daly of Oracle, Rod McKenzie of ArtinSoft, and Martin Langham of Charteris. I should
also like to thank the other individuals and companies who provided information and
advice.

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Contents

Synopsis

1. Introduction ..3

Key issues addressed by the report ..3

Organisation of the report...3

2. The Case for Legacy Transformation..4

3. The Transformation Process ...6

Description of the process...6

Automating the transformation process ..8

Overcoming inherent difficulties in transformation.................................9

Examples of tools...10

Implications ...12

4. Developing a Strategy for Legacy Transformation.....................13

The charter of objectives...13

Portfolio assessment ...14

Transform, replace, rewrite, or re-use?..15

Which target platform? ...17

5. The Transformation Project...20

Outline of a project approach..20

Addressing the specific features of transformation projects21

The need for an internal champion...23

6. Building the Business Case ...24

“If it ain’t broke, don’t fix it” ...24

Explaining software life-cycle investment ...25

Cost, Value and Affordability...26

Tip of the iceberg...27

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Bringing it all together...29

7. The Supply Situation ..30

Understanding the supply-side...30

8. Outlook for Legacy Transformation...33

Further Reading

Glossary of Terms and Abbreviations

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Synopsis
A legacy application is any application based on older technologies and hardware, such
as mainframes, that continues to provide core services to an organisation. Legacy
applications are frequently large, monolithic and difficult to modify, and scrapping or
replacing them often means reengineering a organisation’s business processes as well.
Legacy transformation is about retaining and extending the value of the legacy investment
through migration to new platforms.

Re-implementing applications on new platforms in this way can reduce operational costs,
and the additional capabilities of new technologies can provide access to valuable
functions such as Web Services and Integrated Development Environments. Once
transformation is complete the applications can be aligned more closely to current and
future business needs through the addition of new functionality to the transformed
application.

In short, the legacy transformation process can be a cost-effective and accurate way to
preserve legacy investments and thereby avoid the costs and business impact of
migration to entirely new software. This report explains how transformation works and
proposes a strategy for assessing the suitability of existing applications for migration to
modern platforms such as J2EE and .NET.

The goal of legacy transformation is to retain the value of the legacy asset on the new
platform. In practice this transformation can take several forms. For example, it might
involve translation of the source code, or some level of re-use of existing code plus a Web-
to-host capability to provide the customer access required by the business. If a rewrite is
necessary, then the existing business rules can be extracted to form part of the statement
of requirements for a rewrite.

The report takes the view that J2EE or .NET are suitable target platforms for
transformation. The arguments in favour are based on technical and cost factors, on the
fact that most automatic translation products target these platforms, on a growing skill-
base in J2EE and .NET, making it easier to recruit staff, and on the availability of standard
XML-based protocols for use by other applications, which facilitate the publication of
application function to a network (usually referred to as ‘Web Services’).

Substantial automation of this transformation process is now feasible, making
transformation an economically attractive proposition compared with rewriting or replacing
the legacy application. The available tools cover all aspects of the process, although
some manual intervention will be required. Using the tools in practice will depend on the
scale of the task and whether automation is necessary or economic in every case. It is
assumed of course that the existing applications are of sufficient quality and fit business
needs well enough to make them worth transforming.

The tools available in the market are point solutions – they are applicable to specific
scenarios and only handle part of the transformation process. Consequently there will be
a need to buy in services to help design and execute the transformation as there are too
many unknowns to be overcome without help from experts with previous experience. In-
house resources will be needed to impart available knowledge about the legacy
applications, and to build up the future knowledge base for maintaining the transformed
applications and aligning them with business needs.

 1

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Transforming legacy applications is a task with both risks and rewards. It is easy to fall
into the trap of relying on what seem like stable applications and hoping that they will be
adequate to keep the business going, at least in the medium term. But these legacy
applications are at the heart of today’s operations and if they get too far out of step with
business needs the impact will be substantial, and possibly catastrophic. The challenge for
the CIO is to present the arguments for the legacy investment in the best possible light,
but also to give management the full picture of these risks and rewards so that they can
make a decision in full possession of the facts. Ultimately, legacy transformation is an
‘enabling’ project, that allows other things to happen, but has its own direct benefits as
well.

In selecting a supplier or suppliers for a transformation project, it is best to strike a balance
between the project-oriented players (who will take care of the transformation itself), and
the infrastructure suppliers and in-house staff who have to make the end-result work every
day. In today’s state of the art, transformation expertise must be at the heart of the
solution delivery. This can be done by appointing an independent project manager (in-
house or contractor), and keeping functional changes and integration work separate from
the tasks of code translation, data migration and associated testing.

In conclusion, the automated tools and techniques now available make legacy
transformation technically and economically feasible. Replacement or rewrite are
necessary in certain instances, but if the existing legacy application meets current
business needs and the quality is good, then the chances are that the legacy asset can be
effectively transformed to continue to meet the needs of the business in the future.

� It’s not always necessary to scrap or
option if the current applications are of

� Automatic tools are available to migrate

� If a total rewrite is required, there are
for use as input to the rewrite.

� Don’t ignore legacy applications and
‘fitness for purpose’.

� Heads up on Web Services: Evolutio
legacy applications and make them
planning now.

� Transformation requires as much plann

� Involve in-house technical staff in the
otherwise the organisation may be
understands and are impossible to ma

� Don’t expect in-house technical staff
prefer to rewrite the legacy application

� Don’t attempt transformation on your o
transformation expertise to work with y

Conclusions

replace legacy applications. Transformation is a feasible
good quality and a reasonable fit to business needs.

 most data and code to modern platforms.

tools available to help extract the existing business rules

hope they will go away. Carry out a regular audit on

n of Web Services will put more pressure on to sort out
accessible to customers and business partners. Start

ing and business involvement as any other IT project.

 transformation project to ensure knowledge transfer –
back where it started, with applications that no-one

intain.

to beat the drum for transformation – most of them will
or replace it with the latest application package.

wn first time out - choose a supplier with the appropriate
ou.
2

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

1. Introduction

A legacy application may be defined as any application based on older technologies and
hardware, such as mainframes, that continues to provide core services to an organisation.
Legacy applications are frequently large, monolithic and difficult to modify, and scrapping
or replacing a legacy application often means reengineering a organisation’s business
processes as well.

This report aims to explain the legacy transformation alternative, which maintains and
extends the value of the legacy investment through migration to new platforms, and at the
same time limits the need to reengineer existing business processes. It includes
proposals for a legacy strategy and discusses transformation planning and cost
justification issues. The report’s intended audience include CIOs and their direct reports,
systems integrators, and suppliers of commercial off-the-shelf application packages based
on older technologies.

Key issues addressed by the report

1) What is legacy transformation?

2) How does transforming legacy applications help to meet business pressures for
added functionality, responsiveness to change and improved cost-effectiveness?

3) How feasible is it, and is now the right time to do it?

4) What strategies should IS adopt for legacy applications?

5) What are the components of a legacy transformation project?

6) How should legacy transformation projects be managed?

7) How is legacy transformation to be financed?

8) Who should the purchaser look to for assistance?

Organisation of the report

Chapter 2 considers the basic motivation for legacy transformation, and a description of
the process follows in Chapter 3. Chapter 4 provides guidance on how to make a decision
about when to go for transformation, and when to scrap or replace the legacy application
(or in some cases, when to invest further). In particular, it reviews the difficult question of
choosing a target platform. Chapters 5 and 6 deal with project planning and business
case development, respectively. Chapter 7 discusses the supply-side options and makes
some recommendations on choosing business partners to assist with transformation.
Finally, Chapter 8 provides a general outlook for transformation. The Appendix contains a
brief glossary of abbreviations and terms used in the report.

 3

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

2. The Case for Legacy Transformation

Existing applications are the outcome of past capital investments. The value of the
application investment tends to decline over time as the business and the technology
context changes. Early in the life-cycle there will be enhancement investments to maintain
close alignment with the business but eventually there will come a point where this
becomes difficult. This can happen, for example, where the underpinning infrastructure is
superseded, web access is required, or the weight of changes in the applications and lack
of available know-how make it impossible to continue with enhancements.

Dissatisfaction with legacy centres on inflexibility (takes forever to make changes, can’t
make changes), maintainability (no documentation, no-one understands it, lack of skilled
people), accessibility (can’t make it available to customers, for example), cost of operation
(runs on costly mainframe infrastructure, high license fees), and interdependency of
application and infrastructure (can’t update one without the other).

At this point we have a choice: Do we initiate a process of renovation and transformation,
or do we write the application off and find a replacement?

Application
Value

Time

Lower

Higher

Initial
implementation

Application Life-Cycle - Where next?

Initial
maintenance

phase
Enhancement

phase(s) Replace

Do nothing

Transform

Legacy transformation is about maintaining and extending the value of this legacy
investment through migration to new platforms. Re-implementing applications on
new platforms can have benefits through reduced operational costs, and through the
additional capabilities of new technologies it provides access to valuable functions through
more economical means. Migration to a new platform also provides an opportunity to
align applications with current and future business needs through the addition of business
functionality and through application restructuring.

Drivers for legacy transformation are operating cost reductions, mergers and acquisitions,
internal reorganisation, new corporate infrastructure, need for Web-enablement, outdated

 4

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

performance and functionality, data consolidation, and positioning for future changes such
as B2B via XML and SOAP (Web Services).

Web Services may become a key factor in forcing change on legacy applications. Most
organisations are in what might be referred to as the ‘phase 1’ stage of Web Services
planning – perhaps running trials or simply assessing how important this concept will
become in the future. Some are at ‘phase 2’, and are already exploiting the integration
capabilities, often internally in their organisation. Realistically, Web Services could
become a strategic issue in the near term, adding urgency to the need to take action on
the legacy applications that will be at the heart of the Web Service infrastructure.

It is the position of this report that the tools and techniques to support automated
transformation are now such that migration is both technically and economically feasible.
Replacement and rewrite are necessary in certain instances, but if the existing legacy
application meets current business needs, then the chances are that this legacy asset can
be effectively transformed to continue to meet the needs of the business in the future.

 When does an Application become a Legacy Application?

“A legacy application has been with the enterprise longer than the
programmers who are now maintaining it, lacks good documentation, and
has untouchable code” Joe Celko, IT Writer

“What’s the definition of a legacy application? Answer: One that works.”
Amey Stone, Business Week

“Of course, the real definition of a legacy application is one that isn’t
Internet-dependent.” Amey Stone, Business Week

“Legacy, in an IT context, is usually taken as referring to a mainframe
application, although more recently even some client/server applications
have been accorded this dubious accolade.” The Butler Group

“People associate the term legacy with big iron and Big Blue, but the
phrase is increasingly being used to include any and every application in
existence before the birth of the Web.” Sarah L Roberts-Witt, Writer on
Internet infrastructure and services

“Although an information application may begin its life with a flexible
architecture, repeated waves of hacking tend to petrify mature information
applications…A application which has undergone petrification is termed a
legacy application.” Anthony Lauder, Consultant and Stuart Kent,
University of Kent at Canterbury

"Old software still in use but which could benefit from re-engineering using
more modern methods.” Princeton Internet Computer Dictionary

 5

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

3. The Transformation Process

This section looks at current approaches to transformation and the tools available to help
make it happen. It provides a model framework to assist in distinguishing between the
wide range of products available in the market.

The basic requirement for a successful legacy transformation is to retain (and add to) the
value of the legacy asset. In practice this transformation can take several forms, for
example it might involve translation of the source code, or some level of re-use of existing
code, with the addition of a Web-to-host capability to provide the customer access
required by the business. It will be assumed throughout the discussion that the goal is to
move to a commodity/open platform (such as J2EE or .NET) and that some additional
functionality may be added in the process.

Description of the process

The diagram below is a model of the legacy transformation process including all the key
activities involved. The sequence of activities can vary and there will be an iteration
through the process when transforming a portfolio of applications, for example. It is usual
practice to complete existing code translation, data migration and associated testing
before adding new functionality. This is to test the end-result for equivalence with the
existing application and to prove correctness of the translation and data migration before
any changes are made to program logic and structure.

The input to the process is a legacy application and the outcome is a transformed
application with most of the legacy asset intact, possibly enhanced, and integrated into the
overall applications portfolio of the business. The process is subdivided into the several
process steps necessary to bring about this transformation. It should be understood that,
like most process models, there may be several ‘paths’ through these process steps, and
there may be some iterations. For example, it may be decided to re-use some legacy
code by ‘wrapping’ it in Java, while some other code is translated directly into Java – this
involves different routes through the sub-processes. An example of iteration is when the
transformation happens in stages: One part of the application is transformed to the point
where it is integrated and goes live; then the process starts again to transform the next
part of the application; more integration is required; and this process is repeated until all
parts of the application have been transformed.

Add
function

-ality

Analyse and
assess the

legacy
systems

Administer and control transformation activities

Translate

Migrate data

Re-use

Compon-
entise Integrate

Test

Set transformation
goals & success

measures

This model describes
the process for
transforming legacy
applications – there
are several possible
routes through the
process, and there
may be some
iterations before
transformation is
complete

 6

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

This logic also applies to suites of applications that share the same data or deliver a
common business function. Here it is best to transform the suite as a group, but if this is
not feasible, then additional programming will be needed to provide the ‘scaffolding’
(adapters) required to keep the suite of applications operational during the transition
phases. Typical activities making up these process elements are listed in the table below.

Sub-process Typical Activities

Analyse and assess
the legacy
applications

� Inventory all application ‘artifacts’ – eg source code, copybooks,
JCL, etc
� Application mining to extract business rules
� Map application elements
� Evaluate condition of source code
� Analyse database including, tables, views indexes, procedures

and triggers, data profiling

Translate � Refactoring (code structure improvement)
� Automatic code translation
� Manual adjustments

Migrate data � Restructure ISAM to relational-type database schema
� Create relational environment
� Migrate all non-relational to relational according to a data model

Re-use � Wrap COBOL code in Java (and expose only limited parts to
Web processes)
� Extract business rules and objects and move into Java, XML
� Regenerate COBOL dialect to current standard

Componentise � Extract components, align with business function
� Restructure into presentation, persistent data and business

logic

Add functionality � This is the stage where additional functionality can be added to
meet specific business requirements not already met by the
legacy application

Integrate � Transfer executables, image files, Java etc to servers
� Web-enable
� Install data access link
� Performance tuning (as required)
� MQ and SOAP interfaces

Set transformation
goals and success
measures

� Agree goals with management
� Incorporate goals and measures into project plans
� Carry out periodic ‘sanity checks’ to ensure that fundamentals

are being adhered to
� Measure after completion

Administer and
control the
transformation

� Version control and tracking
� Estimate effort required
� ‘Due diligence’ on feasibility of code conversion
� Establish metrics (eg of complexity)
� Document application (retro-document existing application

and/or end result)
� Choose methodology to govern the transformation

 7

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Sub-process Typical Activities

Test � Use debugger
� Create test scripts
� Confidence testing
� Customer acceptance testing

Automating the transformation process

There is now a range of tools, products and standards available to assist with the
transformation process as described above:

� Tools to help assess the complexities of the existing applications and to map/assess
the code and interfaces.

� Tools to automatically translate code for leading languages.

� Tools to support conversion from legacy data structures to current relational
databases.

� Products to help engineer the required B2B, Web and client-server structures.

� Standards such as XML and JCA (a standard for synchronous connection of J2EE to
applications and transaction processors) that facilitate integration.

� Automatic analysis to help identify and develop standard components.

These tools, products and standards:

� Cut time and costs by reducing manual inputs and speeding up the transformation
process.

� Reduce risk by using proven tools to ensure predictability and transparency of the
process.

� Preserve integrity of the legacy application through acceptance criteria based on
existing test cases.

� Unify the existing applications by migrating from several languages and/or platforms
to one language and platform type.

� Preserve legacy value by transposing existing code to the new platform and ensuring
that the conversion does not add new bugs.

� Jump-start requirements definition by providing an explicit requirements base-line for
the existing applications on which to build the definition of new functional
requirements.

� Future-proof the solution through targeting open platforms and improving the quality of
the code and code structures so that the application can be readily adapted to fit
changing business requirements.

 8

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Overcoming inherent difficulties in transformation

In considering the feasibility of automated tools for transformation, it is useful to consider
this list of obstacles:

� The legacy application is monolithic. Client tier, persistent storage and application
logic are intertwined.

� The legacy application is tied into operating-application-specific facilities, hindering
portability to other platforms.

� The task at hand involves transforming several applications that are ‘stove-piped’, and
possibly written in different languages, at different times, and by people that didn’t
speak to one another.

� The code is the only place where the business rules are documented, the rules are
spread around the code, and there’s no-one around who understands the application.

� The boundaries of the application are ill-defined - the source code is only part of the
application. Its operation may depend on JCL for example, or in the case of 4GLs, on
a run-time engine.

� Duplicate code; un-executed code; multiple copies of interfaces: Which is the ‘correct’
code? Are there hidden dependencies?

� Code quality is poor.

Specifically, this is how the obstacles listed above are addressed:

Obstacle How this is addressed

Monolithic applications Modelling the architecture of legacy applications separates out
the client-tier, application logic and persistent data. Once
migration of the code is complete, componentisation can begin,
to align the components with business function. Representation
of applications and data as components enables rapid and easy
assembly of new business functions. Current state-of-the art
limits componentisation to business functions as a general rule,
and may be limited by the structure of the original code.

Application tied into OS-
specific facilities

Translators include automatic translation of OS-specific program
calls into the equivalent on the target platform. Where there is
an unrecognised call, this is labelled as an exception, to be
manually translated. If there are many occurrences a solution
can be retrofitted into the tool by the supplier. An approach
found in some translators is an ‘analysis’ run on sample code
before translation commences, to identify the likely number of
exceptions. If these fall into a small number of categories, the
translator can be adjusted to deal with them automatically.

Incompatible stove-piped
applications

The great advantage of the modern open application platform is
its ability to integrate diverse applications, once the initial
conversion of the code has taken place to the target platform.
The evolutionary development approach adopted by most

 9

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Obstacle How this is addressed

businesses means that transformation will happen in
conjunction with existing applications, data and infrastructure.
Transformed applications will have to coexist and interoperate
with those applications.

Code holds the business
rules and no-one knows
them

Application mining can separate interface code, flow control, IO,
and so on, from the small proportion of the code that represents
business logic, thus isolating the business logic. The search for
business logic can be narrowed down by automated searches
for code constructs that typically embody business rules. This is
followed by code-inspection workshops with the code
maintainers. A complementary approach starts with the data
whose value reflects the execution of a rule and trace the code
that sets the value (this is most useful in Y2K, Euro type
situations but can be generalised.) From these the implicit
processes are mapped and ready for input to the definition of
requirements or new functionality. In parallel with this effort, a
know-building process is undertaken (more about this later in
the report).

Where are the real
boundaries of the
application?

A combination of application mining and manual inspection
enables the boundaries to be mapped. Specific steps are taken
in 4GL translation, for example, to deal with run-time libraries
and similar infrastructure. Transformation methodologies
specify that to ensure functional equivalence, all code,
interfaces, job control and data need to be considered. This
preserves functional integrity and reduces testing.

Code issues – duplication,
un-executed code,
identifying the ‘right’
version of an interface, and
so on

Sorting this out is a by-product of the application mining referred
to above – recognising however that there are situations where
the requirement is to simply move the code from an older
platform, without any attempt to establish the business logic.
Automated tools for persistent data conversion can produce
data element definitions, determine which source records are
used for data in tables in the target database and designate the
source for the data in each table.

Code quality issues Translation tools can applied to a sample of code to assess it. If
the issue is fundamental than that, for example, the application
does not function correctly, then it may be necessary to drop it
as a candidate for transformation and look to extract the
business rules for a rewrite. Automated inspection tools exist
(such as Advantage) to assess structure).

Examples of tools

The diagram below shows the process model with examples of current products mapped
onto it. This is a representative selection only and there are other products available and
other suppliers operating in this space. The list does demonstrate that available tools
cover the whole process in one way or another. It should be noted that most of these
products are ‘point solutions’. That is, they typically deal with one or two specific
programming languages, and they are restricted to a small number of target

 10

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

environments. For example, the translators are constructed to handle specific languages,
although they can be extended fairly readily to handle other languages as required by the
market.

Further, the products are generally limited to one part of the transformation process. This
is an inevitable consequence of the structure of the transformation process, because
although the transformation process is presented as a monolithic transformation, in fact
the elements are quite different from one another, and the state changes are not at all
consistent. For example, the Translate activities change code from one language to
another, while the Analyse and Assess the Legacy Application activities change a state of
(relative) ‘ignorance’ to one of ‘knowledge’. Thus it is reasonable to suppose that the tools
that support automation of these separate process elements will remain distinct (even
when they are accessed through a common interface, for example).

Add
function

-ality

Analyse and
assess the

legacy
systems

Administer and control transformation activities

Translate

Migrate data

Re-use

Compon-
entise Integrate

Test

Set transformation
goals & success

measures

Netron HotRod,
Semantic Designs,
McCabe Concerto2,
CAST - code mapping
and pattern detection

ArtinSoft Freedom,
Relativity Rescueware -
Legacy to J2EE, .NET,
others

SWS DASE, Relativity
Rescueware, Intercomp
eMaker - hierarchical &
relational to relational

SWS Software, Prince -
COBOL dialect revision

McCabe Audit - assess
metrics

Sapiens eMerge,
Prolifics -
middleware

Cyrano Wincap - retro-
documentation

ASG Rochade -
administration, versioning

ASG Encore - extract
COBOL code segments

HostBridge,
Jacada, DataDirect
- Web-enabling

Merant NetExpress - wrap
COBOL in Java

ArtinSoft Analyzers -
diagnostic assessment

This is not necessarily a bad thing, but it does mean that more than one tool is likely to be
needed and some mixing and matching will be necessary - with sufficient expertise and
good project management, a transformation project will succeed. However, it does
suggest that some scepticism is required when a supplier talks about a solution that “will
take care of everything”.

There are limits on automatic decomposition of applications into components that could
become building blocks for new applications. In general, current transformation
techniques take the applications to a new platform, not to a new architecture. It is not easy
to manually re-structure the transformed application to create components below the
business function level. A feasible and realistic goal might be a target architecture

 11

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

consisting of business objects that encapsulate the business logic of a single entity and
the data particular to that entity. Ultimately, the feasibility of re-use depends on the
structure of the original legacy application – well-shaped structured code lends itself more
readily to some componentisation, whereas linear, monolithic code needs wrapping in
total.

Implications

� Substantial automation of the process is feasible, making transformation an
economically attractive proposition compared with rewriting or replacing the legacy
application. This does assume that the legacy application is ‘fit for purpose’ in the first
place.

� The available tools cover all aspects of the process, although some manual
intervention will be required. Using the tools in practice will depend on the scale of the
task and whether automation is necessary or economic in every case.

� Each of the tools available in the market only handles part of the transformation
process. Consequently there will be a need in most cases to buy in services to help
design and execute the transformation as there are too many unknowns to be
overcome without help from experts with previous experience. Tools provision can
vary – in some cases the code can be sent away to be translated, in others the tools
are licensed on a per use basis. Some tools require operation by specialist staff.

� In-house resources must be involved throughout, at the beginning to impart available
knowledge about the legacy applications, then at the testing and acceptance stage,
and building up the future knowledge base throughout.

A strategy for legacy transformation is discussed in the next chapter.

 12

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

4. Developing a Strategy for Legacy Transformation

Developments in legacy transformation tools and techniques provide an opportunity for the
business to review its legacy portfolio. To transform or replace, to scrap of re-invest?
These are the questions to be addressed by a legacy strategy.

When the requirement is to transform a single legacy application, then the choice of which
way to go will be decided by the quality of the application, and whether or not there are off-
the-shelf products readily available to replace it, if the quality is poor. In most other
situations the CIO needs to begin with more fundamental business questions.

The charter of objectives

There are four common drivers for considering a transformation project:

� Reducing operating costs and the maintenance and overheads of older applications.

� Improving maintainability of the application in situations where no-one knows the
application anymore, or where there is high staff turnover, lack of suitably qualified
resources, or limited/outdated documentation.

� Improving access to the legacy application(s), often to provide Web access to
customers and business partners, or as a result of a merger or organisational
restructuring, when there will be new users and products to be added.

� Positioning for future projects (such as Web Services, or expected business change).

In practice some of these drivers may be combined. These drivers can be seen as a kind
of spectrum, going from ‘push’ factors (which mean that the legacy application must react
to fit a new environment) to ‘pull’ factors (the business wants to seize an opportunity to
grow/reach new customers/add products and services).

Business Driver

Deteriorating
system

Economy eBusiness Get ready for
change

Key business
objective

Value
dimensions

Internal focus External focus

Survival, operational
continuity

Reduce operating
costs

Extend reach inside
business and/or
external to business

Position the business
for the future

• Improved
maintainability
(documentation,
easier to fix)

• Access to support
• Lower operating
costs

• Access to new
customers
(package supplier)

• More adaptable
system

• Reduced operating
costs, licence
costs, back-
up/disaster
recovery costs

• Opportunity to
outsource

• Reduced
complexity

• More adaptable
system

• Increased
revenues

• New
customers/users

• Better service to
existing, new
customers/users

• Reduced customer
acquisition costs

• Brand
enhancement

• Adaptable system
• Closer integration
with business
partners

• Extended services
to customers

• Web Services
option

• Re-use of
components

• Future-proofing

 13

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

These drivers are contrasted in the diagram, suggesting that there can be quite a variation
in the value that the business will be looking for from a transformation. The following
points need to be considered:

� Drivers to the left of the model emphasise cost. The justification for the transformation
project is based on survival and cost savings. This eliminates the possibility of scope
creep from the transformation project (for example). The likelihood is that the
underlying issues are the platform, languages and data structures – in other words,
the architecture.

� Drivers to the right are about business opportunity, and the issues will be about
functionality and future capability.

� There are different levels of business involvement. Obsolescent platforms and
economy drivers are likely to be controlled by the IT department, and be internal
projects for the business. E-business and re-positioning drivers will need to involve
marketing, sales, product development and so on, as well as business partners and
customers in some cases, and so have an external focus.

� ….this may also determine who the real customer is – IT or the business.

� Where a third-party package is contributing to the deteriorating application situation
there will be business involvement in the investment decision – the need to decide on
target platform for example.

� Where cost savings are the primary driver, then outsourcing may be an added
consideration, combined with transformation of the legacy application.

Portfolio assessment

In any business there is the obvious distinction between financial, sales order processing,
human resources and manufacturing applications, for example, but of course within these
categories there are often several hundred individual applications with millions of lines of
code between them. A pre-assessment of the portfolio is desirable before proceeding to
make individual decisions about transformation methods.

The emphasis of the pre-assessment is on business value (one of the aims of
transformation is to address technical quality, so this question is postponed until later in
this process). The goal is to streamline the applications portfolio by reviewing the existing
applications to see whether they continue to provide business value. If applications can
be identified for decommissioning this will result in immediate savings. This streamlining
will require commitment from the business. Here is a starter list of questions to ask about
each application:

� Does it directly impact customers or business partners? If this application stopped
running tomorrow, would it have any impact on the business?

� When was the last time the users of this application were asked about its value?
What would be their answer if they were asked today?

� Is there more than one application capable of providing the information?

 14

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Transform, replace, rewrite, or re-use?

There are alternatives to total transformation of the legacy application, and at this point in
the development of the transformation strategy these alternatives should be reviewed.
The main decision factors are (I) the quality of the legacy application, and (ii) the
availability of replacement packages. ‘Quality’ in this case is a subjective term applied to
the application itself, regardless of the platform it runs on or the code in use, and should be
assessed in terms of such parameters as:

� Current effectiveness (eg errors generated, number of workarounds, level of support
needed).

� Stability of core business rules – will the application logic stay much the same in the
medium-term? There is an underlying assumption in legacy transformation that the
current software asset is a valuable one. If the business model is going to change
substantially then this assumption has to be called into question. Having said this, in
practice the code is often the only repository of business rules and these are scattered
throughout the code. Thus any attempt to ‘start from scratch’ needs to re-construct
and document the requirements captured in the legacy code and take these
requirements as the starting point for the negotiation of new requirements (using
application mining).

� Gaps in the functionality.

� Stage of the legacy life-cycle – in the earlier stages of the life-cycle, a ‘legacy’
application will likely map closely to functionality requirements, although the platform is
obsolescent.

In summary, the ‘quality’ assessment is about the suitability of the legacy application in
business and technical terms.

The availability of a replacement package is the other important consideration and this will
depend on the uniqueness of the current application. If the quality of the legacy
application is poor and there is comparable functionality available in a third-party software
package , it makes sense to replace it.

There are four broad options: transform, re-use, rewrite or replace. As explained earlier,
some or all the elements of the transformation process apply to the first three. The
diagram1 overleaf shows the combinations of factors that might lead to these four options.

1 Diagram adapted from a presentation by Len Erlikh of Relativity Technologies, Inc

 15

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

REPLACE

REWRITE

RE-USE

Quality of Legacy Application

Type of
Application

Adapted from Er lich

Low High

Unique, non-
standard

Standard,
packages
available

TRANSFORM

Transform – Apply the transformation process, adding functionality and business reach
as required.

Re-use – There are two possibilities here, one where the legacy application is centred on
a third-party package/DBMS already, and the other where the business has developed its
own application from scratch. If the legacy application portfolio is largely centred around a
third-party package then the best way forward may be to upgrade to the latest version and
use wrapping techniques to provide the required reach and other functionality
improvements. For in-house applications consider wrapping the application. To provide
direct access to data by end-users without going through the legacy application will usually
mean adding a back-end data warehouse as well. The drawback of this approach is that it
adds more elements to be maintained and two sets of data to be kept synchronised.

Rewrite – The key asset here is the business rules and data structures – the application is
the problem. Application mining and analysis of code logic and data structures is required
to provide the starting point for the rewrite.

Replace – Look for a suitable package or outsource. Be prepared to make changes to
the business model to meet the package half-way.

Checklist for choosing legacy transformation

� Good fit of existing application with business needs

� Moderate functionality changes needed in existing application

� Significant functionality to be added in a new application and close integration with
existing required

� High operational costs of existing application

� Need to migrate to J2EE or .NET for strategic reasons

� Future vision includes Web Services

� Adding Web access

� Difficult to find resources to maintain amend applications on existing platform

 16

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Checklist for choosing to re-use

� Business rules satisfactory

� Low operational costs of existing application

� Difficult to separate logic from persistent data and presentation layers

� Simple Web access required, allowing a wrapping solution

� Have resources to keep core legacy maintained

� Off-the-shelf software central to existing, rely on 3rd party to support, maintain

Checklist for choosing to rewrite

� Business rules satisfactory but needs extensive functionality added

� No off-the-shelf solution comes close to meeting needs

� Poor quality code in existing, with high maintenance costs

� Can afford time, cost and disruption involved

Checklist for choosing to replace

� Application significantly out of line with business needs

� Willing to make changes to business model to fit off-the-shelf solution

� Can afford time, cost and disruption involved

The diagram below summarises the overall decision process in graphic form.

Overview of
Decision
Process

Deteriorating
system

Drivers

Adding
eBusiness

functionality

Looking for
economies

Getting ready
for change

Legacy
portfolio

Map portfolio
against drivers

Screen for
continuing

business value

A B C D E ...
• Quality
• Cost
• Business fit
• Level of

business
change

• Resourcing
• Affordability

Outcome

Transform

Rewrite

Replace

Re-use

Assess Individual
Legacy

Applications

Input to
business

case

Selected
applications

Which target platform?

Transformation projects are broadly aimed at converting code or modules to Java, C++ (or
C#), to a relational database environment, or to a HTML architecture – or indeed some
combination of these. The majority of new enterprise-level development in the
foreseeable future will take place on one of two platforms: Microsoft’s .NET platform or
the multi-vendor Java 2 Platform Enterprise Edition (J2EE). This is not the same thing as

 17

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

saying that all legacy transformation should target one of these two platforms, but there
are sound arguments in favour of doing just that:

� There are technical advantages to these platforms. For example, they provide for re-
use, scalability, and wide access to related products and services. Re-use derives
from the component aspects of these frameworks. Scalability is inherent in the
architectures, and every significant supplier is behind one or the other of .NET and
J2EE. Integrated Development Environments (IDEs) make the development and
maintenance task easier. Application containers (runtime environments) provide the
qualities of service necessary for enterprise applications such as transaction handling,
security and persistence services. These factors (plus market competition for the
supply of platforms) ultimately reduce operating costs.

� Most automatic translation products target these platforms, although with a current
emphasis on Java (and therefore tending to favour J2EE). COBOL dialect translation
is a notable exception.

� There is a growing skill-base, making it easier to recruit staff, and because these are
perceived to be leading-edge technology, they are attractive to existing staff who want
to extend their own skills and advance their careers.

� They facilitate the publication of application function to a network using standard XML-
based protocols for use by other applications (usually referred to as ‘Web Services’).

The very factors that make these platforms suitable for Web Services are of course of
great interest in transforming legacy applications, because of the way integration can be
facilitated. Most legacy applications form part of an existing portfolio of interrelated and
interdependent applications and Web Services are a next step in the evolution of
application integration. Drawbacks include the continuing evolution of standards for Web
Services and resolution of security issues.

The choice of .NET versus J2EE is the subject of much debate. Both have evolved from
existing application server technology. J2EE is quite mature and is already running large-
scale enterprise applications. .NET is the newcomer, but definitely here to stay. Today,
Microsoft-based solutions are limited nearly entirely to Wintel class platforms – in other
words, the choice of .NET implicitly chooses the platform, middleware and operating
system and it is arguable that it takes more effort to scale to several hundred concurrent
users that a similar J2EE implementation. Conversely, the smaller organisation may
choose one platform as their near-universal standard, and will go with .NET for its low cost
of entry and focus on rapid application development. Both J2EE and .NET are being
repositioned to deliver the Web Services vision.

The strategic arguments for each side are familiar: Platform portability versus vendor lock-
in, cost advantages of a bundled supplier versus dealing with several suppliers, a better
architecture versus the risk of instability while the architecture is implemented.

The bottom line is that either platform is a suitable target for legacy transformation and the
choice between them is best made on the basis of business and technical strategies
overall.

There may be considerations that lead to other target options. Some possibilities include:

 18

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

� Migrate persistent data level: Moving from mainframe hierarchical, networked or
relational databases to an RDBMS environment. Some corresponding code changes
will be needed in the application.

� Move to browser access, while at the same time reengineering the application to
support Web-enablement: Add Web self-service functionality, to cover activities
normally undertaken by in-house agents; remove capabilities that should only be
available in-house – eg change discounts; add data, capabilities necessary for Web –
eg email address input; migrate to shared databases; create data warehouse to
support Web access (for example, legacy database may be non-relational or non-
ODBC compliant); separate out presentation logic.

� Built complementary solutions around a CICS legacy: CICS TS V2 provides an EJB
execution environment, enabling use of CICS support for EJB session beans to
provide client access to CICS transactions, programs and resources via IIOP. (The
CICS IIOP server provides the run-time environment in which the container and, in
turn, the enterprise beans execute and from which they may interact with other CICS
services and resources.) Possibilities include HTML or XML client-side presentation,
with execution of servlets/beans in WebSphere environment, and Java method
invocations then flowing over IIOP to execute enterprise beans running under CICS.
Java beans under CICS in effect ‘wrap’ the existing applications.

� Migration to client-server: This is likely to be confined to situations where a high-
function user interface is required. Client-server can result in higher support costs for
distributed computing environments coupled the more complex client/server
application environments. It does not always make sense today with J2EE and .NET
available.

� Migrate to COBOL: Translators exist for certain 4GLs to COBOL, which may meet
the minimum requirement to exit a particular obsolescent platform. Specific examples
include 4GL to COBOL conversion (e.g., CA-Easytrieve Plus, DYL-260/280,
DataAnalyzer, etc.) — also BAL to COBOL conversion, CSP to COBOL, and OS/VS
and VS COBOL II to COBOL for OS/390. Other translators identified include PL/I to
Cobol, Natural to Cobol, also Cobol II, 74, or 85 to OS/390 Cobol, OS/390 Cobol to
Client/Server Cobol.

 19

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

5. The Transformation Project

A transformation project exhibits many of the characteristics of traditional development
projects such as objectives setting, user involvement, testing, scheduling, monitoring, and
so on. There are however some factors that differentiate a transformation project:

� The solution is built on the foundations of a legacy asset, rather than starting with a
discovery of business requirements. Of course there may be additional functional
requirements to be added, but the usual procedure is to add this functionality after the
transformation is complete.

� Enabling technologies need to be procured for translation, data migration, and re-use,
or a suitable partner identified to provide the technologies.

� Because the legacy application is already part of today’s business operations, a
smooth transition is vital.

� Know-how needs to be built up over the course of the project so that support
capabilities are in place on completion. This is the case to some extent in any
development project but because of (usually) outdated documentation and limited
understanding of the legacy application, coupled with the move to a new architecture,
specific attention is needed to create know-how and make it accessible.

� Adjustments will be needed to existing development methodologies to ensure that the
work is structured to fit the needs of a transformation project and delivers to business
and technical objectives, schedule, and budget.

Outline of a project approach

The classic development project follows a four-stage pattern of Plan, Analyse, Design, and
Implement. The greatest risk is that the transformation project will be seen as
implementation only, with little need for plan, analysing, or design. One way of
understanding the totality of the work involved is illustrated in the diagram below.

Additional
functionality

definition
Proof of
Concept

Add
function-

ality

Analyse and
assess the

legacy
systems

Translate

Migrate data

Re-use

Compon-
entise Integrate

Test

Build know-how

Acquire
transformation
technologies

Project
set-up

Administer and control transformation activities
Set transformation
goals & success

measures

 20

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

This is a logical expression of the tasks and activities involved, not a definitive way to
complete the project. Any organisation undertaking a transformation project should check
its plans against this diagram to ensure that nothing has been forgotten. The diagram
illustrates the point that initial work is needed before progressing the transformation
project. For example, the available transformation technologies may have to be sourced
from multiple suppliers, and it is likely that consulting expertise will be needed, at least for
a first transformation project. Secondly, when there is uncertainty about the quality of the
legacy application it can be worthwhile to run a proof of concept mini-project to confirm
feasibility and (perhaps equally important) to firm up the total project costs. Subsequently
the requirements for additional functionality can be acquired, following standard
development procedures, with the proviso that this functionality is being added to an
existing application, so the business users are not starting with a blank sheet.

Building know-how is emphasised here because of the peculiarities of the legacy asset.
Although not always the case, legacy applications are typically lacking in documentation,
business users are unfamiliar with the precise nature of the business rules built into their
systems, and the technical expertise is confined to perhaps one or two people in the IS
department. The Build Know-How activities might include the following:

� Confirm the business rules, and make them accessible via documentation or HTML
access. Application mining is a useful technology for homing in on the parts of the
legacy code that are likely to contain the rules.

� Identify any gaps in the rules - this is especially significant where the application
access is to be extended (eg via Web-enablement) – and work towards filling these
gaps.

� Assemble a ‘user model’ that can be used as the basis for acceptance of the
transformed application. The ‘user model’ contains descriptions of the functionality to
be exhibited by the application, the constraints that it must satisfy (eg browser version,
hardware), and properties that the application must possess, such as portability,
maintainability, security and so on. Review available test scripts and extend these to
ensure that the ‘user model’ can be verified.

� Get development and support staff up to speed on the target technologies.

� Ensure transfer of relevant know-how from consultants throughout, and particularly
when it is a first-time transformation project for the business.

Addressing the specific features of transformation projects

The ‘method’ described in the previous paragraph described a framework for
transformation. The specific features listed earlier are partly addressed by this framework,
and by additional specific activities:

Building on the foundations of a legacy asset, rather than starting with a discovery of
business requirements – The transformation process described earlier includes an
assessment and analysis phase. For situations where the business rules in the legacy are
uncertain, they can be clarified in this phase – or where a rewrite is called for, they can
form the basis of requirements for development. Application mining tools can be useful in
this process. The inclusion of activities to build know-how are complementary to this work
and ensure that the legacy asset is well understood.

Procuring enabling technologies for translation, data migration, and re-use, or a suitable
partner identified to provide the technologies – The framework above provides for this.

 21

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Achieving a smooth transition – There is no simple recipe for making the transition
comfortably. One approach that has been used successfully to migrate groups of
business function into the live environment, using middleware to integrate with the function
that has yet to be migrated. This happens over four or five iterations until the migration of
all the business function is complete. The data will need to be synchronised throughout.
With data, one approach is to have logical legacy and new databases which are kept
synchronised using a product such as DC Metalink. Alternatively middleware can be used
to provide direct access from legacy. The direct access approach may require some
modification to the legacy application code and is most suitable when there is no
requirement to migrate the legacy data store.

Building up know-how over the course of the project – The concept here is that the project
plan needs to gradually build up the knowledge about the existing and target applications,
and to create the knowledge to support it longer-term – this could be in documentation and
in people’s heads. The difference between this and the usual approach is the explicit
tasks identified to make this happen. Note that there are different kinds of know-how –
customer (user), programmers (for on-going support), and support staff (eg help desk).

It is advisable to involve a consulting partner, at least for the first project – someone who
will anticipate the many ‘gotchas’ and who knows their way around the target environment.
Here’s a checklist: Do they have a methodology? Have they access to the necessary
tools? What is their track record? Do they know their way around .NET, J2EE or
whatever target platform you plan to adopt?

Making adjustments to existing development methodologies – Transformation projects
require structure and deliverables like any other project. Any methodology based on the
V model will work effectively, although some modification to procedures may be necessary
to follow the principles of user, architectural, and implementation model testing.

User Model

Application in
use

Architectural
Model

Implementation Model

Application
concept

Delivered
application

Component
specification

Application
design

Requirements
expression

Tested
application

Tested
components

The so-called V model
describes application
development as a
progression of stages from
requirements expression,
through design and build to
acceptance. The
deliverables from the later,
upward-pointing phases are
shown, through testing, to
be implementations of the
matching specifications on
the other side of the V.

Waterfall methodologies fit the V pattern as do most ‘lightweight’ methodologies.

Lightweight methodologies have superseded the traditional waterfall approaches in many
development shops. These lightweight (agile) methods are adaptive and cope well with
change, and are people-oriented. They are suitable for legacy transformation because of
the way transformation projects are approached (it is necessary to get through the
conversion phase of at least part of the existing portfolio before it can be confidently

 22

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

predicted what the introduction of new functionality will cost), the low effort required in
design (the requirements are largely inherent in the legacy), and the proportionately higher
effort required for testing and cutover. If a development department already has a
documented lightweight methodology in place, some adjustments may be needed to fit a
transformation project. For example, the scope and definition of the earlier phases and
deliverables will need to be adjusted, and activities such as testing will need to be
changed.

The need for an internal champion

There is a common perception in business that legacy systems are yesterday’s solutions.
The legacy application is not seen as a basis for going forward, but as outdated, difficult to
maintain, and possibly lacking a good fit with business needs. A champion is essential to
promote the transformation option and put forward the business case.

This will not be easy, as there will be interests opposed to transformation and favouring
other options. In-house technical staff have little incentive to keep the legacy application
but will lean to a rewrite or package replacement options because these provide new
development experience and the opportunity to learn new skills. Existing platform
suppliers will want to keep the status quo. Senior managers will be at the receiving end of
marketing campaigns from ERP and package suppliers, all promising benefits through
replacement and process redesign. End-users may be more positive because the legacy
application does the job they expect of it today, even though the cost may higher than they
would like and it lacks certain capabilities (for example, no Web access). However, they
will find it difficult to assess the technical advantages and risks of options that are quite
different from one another (rewrite versus replacement by a package versus
transformation).

Because of these considerations, it must fall to the CIO to develop the case for
transformation and to explain the pros and cons of the various options to business
managers. The CIO will have to push in-house analysts to look at all the options.
Experience shows that they will prefer the design of a new solution over re-use of the old
and this tendency needs to be counter-balanced by the CIO. Alternatively, a third party
may have to be involved to see that an objective analysis takes place.

Note however that business managers need to champion the transformation project
overall. It may appear to be a like-for-like replacement of the existing application, but there
will be a need to accept the end-result as equivalent, and to be involved in any functional
changes. And when there are problems or delays (as there always are), there needs to
be someone to remind everyone of why the work is being done and the benefits that will
accrue to the business as a result.

 23

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

6. Building the Business Case

These are hard times when it comes to any form of business investment. The situation is
made worse for legacy investments because many of top management’s background
assumptions and time-honoured business models are inadequate to understand what is
going on. The key is to find the right way to present the issue to top management, spelling
out the downside of not investing, and contrasting the risks and benefits of the various
alternatives.

What makes justifying a legacy transformation project so difficult? First of all, managers
are most comfortable with the idea of spending money to get something new and at first
sight transforming a legacy application seems like a project to ‘fix’ something that already
works. Second, the legacy project is often an ‘enabling’ investment – that is, it positions
the business to achieve something else. For example, one of the benefits might be to
make it easier to add new functionality, implying that the functionality could be added
some other, possibly less costly way. Indirect benefits of this kind are always more
difficult to quantify and justify. Third, the costs of the transformation project have to be
spelled out, while the true cost of today’s legacy (disruptions, maintenance issues, costly
operations, and so on) is hidden in other budgets. These are the issues covered in this
section.

“If it ain’t broke, don’t fix it”

This is likely to be first reaction of a manager to a request to spend money on a legacy
application. Like other situations in life, people become used to their legacy applications,
the awkward interfaces, the workarounds, the time required to make changes, the cost of
maintenance and operation, and so on. Every user is overworked and understaffed and
people don’t have the time to think about potential fixes and improvements. They may
grumble and complain but they’re too busy to do anything about it. So unless there’s a
crisis, they would just as soon get on with the job, thank you very much.

Management hears the grumbles and complaints but unless there’s a demand from
customers or moves by a competitor they are unlikely to react. Management is used to
the size of the maintenance budget and it seems just as easy to approve the same budget
for next year, without getting into an argument about it. Any proposal to transform a
legacy application is therefore likely to get a negative response.

Overcoming this inertia is the first step in moving the legacy transformation proposal
forward and to do this it is necessary to explain the risks and opportunity costs of doing
nothing. For example, the risk posed by key maintenance staff leaving: Legacy
applications by their nature are opaque, not-so-easy to work with, because of the layers of
changes made over the years, and lack of clarity in documentation. (Documentation isn’t
usually created to help maintainers, it’s there to help users, and to explain how and why
the application was built that way in the first place.) So it takes long and close
acquaintance to get to know the ins and outs of these applications, and hence the
dependence on the people who maintain and enhance them. Of course people can be
replaced. But this takes time, there’s a learning curve involved, and if the programming
language is relatively obscure, it may prove difficult to hire in the skills needed. Other
potential risks include withdrawal of support by platform component suppliers and lack of
replacement and upgrades for hardware and software.

 24

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

At the business level there may be risks posed to future business plans still on the drawing
board. Can the legacy application cope with those 50% extra customers? Will the people
in Pre-Sales be able to cope with that many quotations, given the state of the application?

An example of opportunity costs is the staff time that could be released by moving to up-
to-date tools. The current maintenance staff are tied up maintaining (with some difficulty)
an ageing application - this work could take less time and effort on a transformed
application due to the availability of tools and their inherent productivity. Changes and
enhancements would be executed more quickly and efficiently, and the staff in question
may be able to free up time for new development.

These arguments based on risk and opportunity costs (the costs of doing nothing) must be
complemented by an explanation of specific benefits and how the legacy investment
advances the organisation’s business goals. While these will be context-dependent,
typical benefits can include long-term cost reductions, time-to-market improvements, and
extended business reach, just to pick three.

Explaining software life-cycle investment

After the investment push on legacy applications leading up to Y2K, management may
have concerns about further spend on the same applications. The same reaction is likely
to a transformation request for a two- or three-year-old ‘legacy’ application. (This situation
can arise, for example, when the build of the new application started some years back, but
because of delays and time taken to roll out across the company, is already showing it
age.)

In some ways this is a similar issue to the one in the previous section, but with an added
dimension, as it implies there’s a history to this legacy question. The basic issue here is
that management has not been given a view of the future. In other words, their
expectations have not been properly managed. This has its origins in the way we have
treated large projects in the past, as relatively isolated, one-off events, rather than part of
an on-going business programme. Businesses have acquired the habit of thinking of a
applications ‘project’ as something that is finished when the application is delivered, the
build team disperses, the consultants leave, and the users get on with the job.

The justification argument needs to focus on the treatment of software investment and get
across the notion that software is (or should be) a non-perishable asset. Businesses have
built up substantial investments in legacy applications and their effective operation is core
to running today’s businesses. It makes sense to keep a legacy application running if it
continues to serve business needs. Yet the forces of business change, technology
obsolescence and decay in internal know-how put applications at risk over time.

This is why business invests in maintenance and improvement. But is the legacy
investment like a car, to be replaced by the latest model every so often, or is it more like a
house, requiring regular attention and renovation, and an extension added if and when the
family grows? Recent developments in tools and platform technology make it practical
and sensible to take the latter view. Looked at in this light, legacy transformation
becomes a way of prolonging the software investment and quite possibly a way to deliver
better data and added flexibility for future expansion upgrades – as well as costing less.

 25

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Cost, Value and Affordability

Not every legacy justification starts from the same point. It is necessary to understand
where this starting point lies in what might be described as the ‘Bermuda Triangle’ of Cost,
Value and Affordability. The common confusion and difficulty that IS finds itself in justifying
investments in ‘enabling’ projects (and this is what legacy transformation is, first and
foremost) lies in this uncertainty. The reason behind this difficulty is that once the
objections on the grounds of cost are addressed, then the ground shifts to questions about
value (is it worth it?), and when that question is dealt with, the question of affordability (can
we afford it?) is raised. After that, the discussion shifts to why it costs so much in the first
place. And so the argument goes around and around.

AffordabilityValue

Cost
The Bermuda Triangle illustrates
the potential trap and shifting
nature of objections raised to a
legacy investment proposal. The
way out of the triangle is to
identify the current position and
then work systematically to
achieve the right balance of
arguments.

The way out of the triangle is to identify the current position and then work systematically
to achieve the right balance of arguments. At the ‘cost’ apex, the central discussion is
about how much to spend, what the options are, and which choice is the right one. At the
‘value’ apex on the other hand, the focus is on how worthwhile the investment is – at its
most basic, the objection goes back to “if it ain’t broke, then don’t fix it”. Finally, at the
affordability apex, a favourable value and cost balance has been established, and the
objections centre around priorities and the other opportunities to spend this money in the
business.

Location Central
Issue

Symptoms Way forward

Cost apex Choice of
solution

• “Is this the right amount to
pay?”

• Indecision about the choice
of option to go with: “Let’s
replace the legacy
application” “No, let’s rewrite
it”

• Uncertainty about how much
legacy transformation will
cost

• Compare the various options

• Include the ‘do nothing’ option

• Include operating costs, not just
project costs

• Get a fixed-price quotation

Value apex Benefits • Uncertainty about what it’s
worth

• “If it ain’t broke, don’t fix it”
• “There are lots of

assumptions here – we
don’t know what the future
business will look like”

• Explain the risks and
opportunity costs of doing
nothing

• Ask business users to put a
value of flexibility, reliability and
other anticipated improvements

• Consider the opportunities to
leverage the transformation

 26

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Location Central
Issue

Symptoms Way forward

results across the business
Affordability

apex
Priorities • “It’s a good idea, but is this

the best way to spend the
money?”

• “We have other priorities this
year”

• “There isn’t enough in the
budget”

• “We’re spending enough
already”

• Adopt a portfolio management
perspective – score projects on
contribution to business,
current level of technical/cost
satisfaction to demonstrate
relative benefits

• Show the savings

• Offset the capital spend spike
by tying the transformation
project into something that
everyone is in favour of (eg
Web access by customers)

Tip of the iceberg

A common thread running through the previous discussion has been the cost of doing
nothing. Much of the cost of today’s legacy is hidden in what might be called the ‘iceberg
effect’ . On the surface, the only costs are the maintenance resource. But the real costs
of a legacy application include equipment, software, personnel (operations, problem
handling, liaison, maintenance, training, recruiting, and so on), communications (tariffs,
support), and facilities (space, moves and changes, power, cooling). Business costs may
include disruption to the business, downtime, staff overtime, rework due to failures/errors,
or negative customer impacts.

Maintenance
resource

+ Potential business costs eg
• Downtime
• Staff overtime
• Rework due to

failures/errors
• Negative customer impacts

• Equipment & software
• Operations, problem handling,

liaison, training, recruiting
• Communications & facilities

Management is
often unaware of
the substantial
costs of today’s
legacy
applications –
including the
business impact.

The reason this is important to bring out in the open is because the costs of the legacy
investment proposal will be visible and could look inordinately expensive if compared with
the visible costs of the today’s application. It is necessary to compare like with like.

 27

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

According to Gartner, 60 to 80 percent of the typical IT budget is spent on maintaining
mainframe applications and the applications that run on them. If transforming legacy
applications can dent this figure by even 10 percent, the impact will be substantial. Further
reductions can come from consolidating servers and storage – Gartner have pointed out
that hardware expenses account for 18 percent of the typical budget (and the same
amount again for operations staff). Consolidation can lead to 20 percent reduction in these
costs (due to the improvements in utilisation and load sharing). Thus it is important to
show what the comparable figure is for the existing legacy applications.

The text-book definition of cost refers to “both the measurable and hard-to-measure
resources for making goods and delivering services…the full cost of any cost object….is
the cost of resources used directly for that object plus a share of the cost of resources
used in common in making all objects”2. In this instance the costs are being collected for
the purpose of making a decision so the precise allocation of resources is secondary.
Allocating operating costs in this way can be a complex exercise, but the idea is to show
the scale of the costs involved, not to tease out every detail. The resource allocation
needs to focus on the areas where costs would vary if the transformation project goes
ahead.

At the risk of stating the obvious, it will be management judgement that ultimately comes
into play, and the figures are there to inform this decision.

This issue of visible/invisible costs applies equally to other options than legacy
transformation. A case in point is legacy replacement: For example, the analysts looking
at other options may have asked an ERP supplier for a quotation to replace the legacy
application(s). It is necessary to go beyond this quotation, to consider the other (often
substantial) costs involved, which are often well above and beyond the supplier’s quoted
price to do the work. These are another form of ‘iceberg’ effect, although the 80/20 rule is
less likely to apply:

• Escalating training and change management costs due to changes in roles and
responsibilities brought on by the new business models implicit in the ERP package.

• Data conversion is not like-for-like, thereby adding to the effort required and diverting
operational staff from their day-to-day tasks.

• User retraining.

• The data in the new package will not map one-to-one with today’s legacy coverage,
and extensive analysis may be needed to deal with the gaps. Adjustments may be
necessary to other in-house applications.

• Package configuration and testing, especially of interfaces to in-house applications, is
largely unpredictable. Contingency allowances need to be made.

• The consulting costs quoted are for the work as described. Apart from the obvious
‘scope creep’ factor, failure to transfer know-how to in-house staff can mean long-term
reliance on the consultants and escalating consulting costs.

2 CH Brandon, RE Drtina Management Accounting McGraw-Hill (1997)

 28

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Bringing it all together

Transforming legacy applications is a task with both risks and rewards. It is easier to rely
on what seem like stable applications and hope that they will be adequate to keep the
business going, at least in the medium term. But these legacy applications are at the
heart of today’s operations and if they get too far out of step with business needs the
impact will be substantial, and possibly catastrophic. The challenge for the CIO is to
present the arguments for the legacy investment in the best possible light, but also to give
management the full picture of these risks and rewards so that they can make a decision
in full possession of the facts. Ultimately, legacy transformation is an ‘enabling’ project,
that allows other things to happen, but it has its own direct benefits as well.

� To sell a large-scale transformation project successfully to management, it is necessary to
present decisive evidence that the project will save money and strengthen the business.

� Spending money to keep legacy applications going ‘as is’ can be a mistake. Making business
plans based on these legacy applications is another mistake. The costs and risks associated
with the ‘no change’ option need to be spelled out.

� The transformation project's expected ROI will come in part from the projected decrease in
maintenance and running costs of the new application compared with the legacy application.

� The most important justification for beginning this kind of project is, however, the business
need.

� Appropriate cost, value and affordability arguments should be marshalled in advance in order
to overcome potential objections.

� Applications are not finished when the ‘project’ is finished. Application life cycles require on-
going spend to ensure business and technical effectiveness. Legacy transformation should be
presented as part of normal asset maintenance and renewal, not as a ‘one-off’, unusual rescue
mission, so to speak.

� Update the business case as the work progresses to ensure visibility to stakeholders
(management, users, project team, suppliers) and to enable periodic ‘sanity checks’.

 29

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

7. The Supply Situation

The discussion so far has concentrated on transformation technology and projects. In this
section the discussion turns to the supply-side and where project managers should look to
buy transformation technology and associated services. The concept of a ‘legacy
transformation value chain’ is introduced as a way of understanding the roles of different
players on the supply-side. This is a way of thinking about the role that each type of player
takes on in the value chain – from this the potential purchaser can take a view of how to
go about selecting suitable supply partners.

Understanding the supply-side

The work needed to deliver transformation has several dimensions – requirements
definition, program translation, testing, change management, installation of new platforms
and so on. As explained earlier, the current state of development of the market means
that there are few situations where the purchaser can rely on finding one supplier to satisfy
all these needs, and the specialised know-how needed usually makes it impractical to
undertake the work in-house. The purchaser will be looking to buy in some (or all) of the
products and services needed, but will not want to deal with too many suppliers, to avoid
the risks of split responsibilities and confusion over who does what. So who should the
purchaser deal with?

A good starting point for understanding the supply-side is the ‘legacy transformation value
chain’. The diagram overleaf shows such a legacy transformation value chain. This value
chain shows the different type of player - the providers of platforms and enabling projects,
providers of transformation products and services, and the consumers – the IS
department and the end-user (and possibly outsourcers).

The categories are somewhat arbitrary but essentially they reflect the source of supplier
revenues. Note that a single supplier may take on more than one role. For example,
selling consulting days as well as software licences.

The best way to categorise the suppliers is to consider their revenue drivers. Each player
in the value chain has different revenue drivers. The players upstream in the value chain
(to the left of the diagram) are looking for on-going revenues, from licences and upgrades,
hardware and operating systems, training and support, and so on. The mid-stream
players are mainly involved in the transformation project itself, so they will achieve what
are essentially one-off revenues. Outsourcers and the in-house IS department for their
part are concerned with the cost of operations and what revenues they derive from end-
users and the business.

The value chain has three implications for supply-side behaviour:

� Position in the value chain is the driver for supplier strategies. For example, it is in the
interest of suppliers at the ‘infrastructure’ end to give away migration tools ‘free’ since
their revenues are from software licenses, product upgrades and support generally –
all recurring revenues over the life-cycle of the transformed applications. Likewise,
integrators may find it profitable to do the same, as their revenues come from the
services provided. This can result in a squeeze on transformation toolset suppliers.
The drawback for the purchaser is that the choice of technologies can be determined
by existing business relationships rather than the best tool for the task at hand.

 30

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

� Partnerships in the value chain. Players upstream in the value chain will build
partnerships with players closer to the purchaser such as integrators, who essentially
‘own’ the customer relationship. The integrator handling the transformation project will
tend to make key decisions on tools, infrastructure and so on. The reverse may
sometimes be the case, for example where the infrastructure sale has been made,
and the infrastructure vendor will be looking to help the purchaser move all
applications across with the help of an integrator partner.

� Automation is not the primary interest of infrastructure suppliers and integrators, but
less automation equals greater cost and increased likelihood of errors being
introduced: Infrastructure suppliers and integrators will tend to a decision that favours
their revenue position. For example, the integrator makes more money from
extended manual effort (since revenue is a function of man-days expended), but this
costs more for the purchaser, and manual intervention can lead to the introduction of
new bugs in the application. Infrastructure suppliers have limited application know-
how and their professional services fees are expensive, and geared to their products.
Either way, the purchaser stands to lose if the best use is not made of the
transformation tools and technologies.

Base
Platform
Provider

Enabling
Technology Mining Tools Conversion

Tools
System

Integrator Outsourcer IS
Department Customer

‘Infrastructure’
suppliers

Transformation
Project

Operations

Examples Microsoft

Oracle

Sun

SAP

IBM

Jacada

IBM
Websphere

Acucorp

Oracle9iAS

BEA

Relativity

Netron

Cyrano

Allen
Systems

SEEC

CAST

ArtinSoft

Tominy

SWS S/W
Services

CMG

Progeni

Adpac

SEER
Computing

 LegacyJ

Modis
Solution

NIIT S/W
Solns

EDS

Capita

Revenue
driver
(examples)

No. seats

Upgrades

Size of
installation

Web traffic
expected

No. seats

Upgrades

No. project
team seats

Lines of
code
converted

Days
worked on
project

Days
worked on
project

Transaction
volumes
processed

Budget
based on
on-going
cost of
operation

Revenue
duration

On-going On-going Project Project Project Contract

Competitive
strength

Marketing

Technology
owner

Limits
degree of
change
required

Specialist
with
proprietary
techniques

Specialist,
promises
quick
results

People
skills,
experience

Scale
economies

Gatekeeper

…and
weakness

Far from
customer

Point
solution,
doesn’t
address
basic
transformati
on issues

Requires
highly-
skilled
people

Still leaves
much of the
work to be
done

Only part of
the solution
required

Some
manual
intervention
needed

Track
record
rarely fits
precisely,
therefore
limited
credibility

No or very
limited track
record

Limited
resources
(numbers,
skills)

No
experience

Legacy Transformation Supply Value Chain

 31

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Implications for purchasers

The best strategy is to strike a balance between the project-oriented players (who will take
care of the transformation), and the infrastructure suppliers and in-house staff who have to
make the end-result work every day, and to ensure that the transformation expertise is at
the heart of the solution delivery.

At the same time, the purchaser will want to avoid dealing directly with a multiplicity of
vendors and the risk that suppliers may ‘pass the buck’ when difficulties arise.

The best strategy for the purchaser will look like this:

� Keep the project management activity independent. Appoint an in-house project
manager or employ a contractor or trusted consultancy.

� In planning the project, group the code translation, data migration and associated
testing, and keep the rest of the work separate. This will clarify where responsibility
lies and make best use of the specialised skills available.

� Research the most suitable tools for the translation, data migration and re-use
activities, based on the purchaser’s specific situation and either find a suitably-
qualified integrator, or deal directly with the suppliers involved if it is a sizeable
transformation project. For example, major translation work can sometimes benefit
from custom additions to the translation algorithms, and the supplier is in the best
position to do this.

� Select an integration partner who will involve in-house staff in the changes and
subsequent integration so that there is transfer of know-how. Use the integrator to
sub-contract services from infrastructure suppliers, both to manage them more
effectively, and to share the risk of cost overruns with the integrator.

� Consider running a ‘proof of concept’ project on a smaller or less business-critical
application in order to assess the performance of the suppliers, and to get the in-
house team up the learning curve in a low-risk environment. This will also give a
better indication of the costs.

 32

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

8. Outlook for Legacy Transformation

Legacy applications serve a vital role in the landscape of commerce.. The service they
provide is critical to the day-to-day function of industry as a whole. For example to
conceive of e-commerce solutions without exploiting legacy applications is to ignore the
one key to making end-to-end e-commerce a reality.

The most common complaint about legacy applications is that they are too old, too
inflexible and too outdated to add real value to the evolution of industry system solutions.
While an ideal world would discard last year's technology each year to replace it with the
latest in system design and functionality, reality and prudence prevent this. In the case of
mission-critical business systems, this is neither practical nor prudent. It is necessary to
rethink how the life-cycle of legacy applications is managed. This report has argued that
transformation is feasible, is becoming easier, and with the appropriate choice of strategy
and project management, presents a real alternative to replacement or rewriting
applications from scratch.

Transformation cannot happen overnight because it involves the collaboration of so many
constituents with so much valuable business information and functionality at stake.
However the availability of tools and processes can greatly simplify and speed up the
process and, as even a brief consideration of the factors will reveal, the alternatives can be
even more costly and time-consuming and risky for the business.

What is the future outlook? Current vendors' strategies are narrowly focused and
suppliers have a proprietary interest in furthering their own tools and services. Without
more co-operative effort across the value chain, this situation will continue to slow down
the wider acceptance of transformation as a legitimate and effective way of moving
forward.

On the other hand, the demand for access to the benefits of the present development
tools available for the Java and .NET environments may drive transformation forward and
increase the demand for transformation products and services. These environments
include code generators, intelligent editors with built-in wizards, logic-tracing tools and
debugging facilities. Analysts can create design models that feed specifications into
development products. These tools are part of integrated development environments that
synchronise business models, specifications and program logic across the development
cycle. Changed business rules in a design model are reflected in the system source code
and a coding change will also be reflected within a design model. Such model-driven
development and maintenance is a very effective and efficient way to evolve systems over
the long term.

Another factor is the lack of skilled resources: There are too many critical legacy
applications and too few skilled technicians to work on them. Transformation provides the
opportunity to increase the effectiveness of the legacy programmers through better
analysis, development, upgrade, debugging and componentisation tools. It makes sense
to migrate legacy applications to these environments rather than look for the tools to be
retrofitted to legacy environments.

Putting these factors in perspective, legacy transformation is currently at the early adopter
stage, but if the level of interest in J2EE and .NET keeps increasing and users are looking
to take the benefits of these platforms, then the future of the technology looks positive.

 33

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Further reading

The following articles and white papers have helped to shape my views:

Anon Application Mining – what 24th August 2001 http://www.it-
analysis.com/article_pf.php?id=1575

John Bergey, Liam O’Brien, Dennis Smith DoD Software Migration Planning Technical
Note CMU/SEI-2001-TN-012 Carnegie Mellon University, August 2001

A Bainbridge, J Colgrave, A Colyer, G Normington CICS and Enterprise Java Beans IBM
SYSTEMS JOURNAL, VOL 40, NO 1, 2001 http://www.ibm.com

Michael L Brodie, Michael Stonebraker DARWIN: On the incremental migration of legacy
information systems Technical memorandum TR-0222-10-92-165 Electronics Research
Laboratory, College of Engineering, University of California, Berkeley, March 1993

Joe Celko Breaking tradition Intelligent Enterprise, February 21, 2002
http://www.intelligententerprise.com

Arie van Deursen, Paul Klint, Chris Verhoef Research Issues in the Renovation of Legacy
Systems ETAPS Conference, 1999

Jim Duggan Graceful Retirement: Your Applications, Not You AV-15-4789 Gartner Group,
February 2002-08-15 http://www.gartner.com

Len Erlikh Unlock the power of your legacy systems Relativity Technologies Inc, 2000
http://www.relativity.com

Len Erlikh, Mike Ferris Business-Rule Extraction from Cobol to Java 1998
http://www.devx.com/premier/mgznarch/javapro/1998/JP_junjul_98/le0698/le0698.asp

Franck Gonzales What’s ahead for client/server architecture? Owendo, France 2001
http://www.owendo.com

Simone Kaplan Despite the sluggish economy and uncertain business climate, right now
is the perfect time to tear down your legacy applications and start over. CIO Magazine
March 15 2002
http://www.cio.com/archive/031502/infrastructure_content.html?printversion=yes

Anthony Lauder, Stuart Kent Legacy system anti-patterns and a pattern-oriented migration
response Computing Laboratory, University of Kent at Canterbury, 2000
http://www.ukc.ac.uk/research/publications/2000/compsci.pdf

Jerry Loza Is a switch to Java a good move for you? June 27, 2001
http://www.techrepublic.com/article.jhtml?id=r00820010627ggp01.htm&src=bc

Amey Stone Keeping legacy software alive Business Week, June 14, 2001
http://www.businessweek.com

Scott Tilley The Net Effects of Product Lines SEI Interactive, September 1999
http://interactive.sei.cmu.edu

 34

http://www.it-analysis.com/article_pf.php?id=1575
http://www.it-analysis.com/article_pf.php?id=1575
http://www.ibm.com/
http://www.intelligententerprise.com/
http://www.gartner.com/
http://www.relativity.com/
http://www.devx.com/premier/mgznarch/javapro/1998/JP_junjul_98/le0698/le0698.asp
http://www.owendo.com/
http://www.cio.com/archive/031502/infrastructure_content.html?printversion=yes
http://www.ukc.ac.uk/research/publications/2000/compsci.pdf
http://www.techrepublic.com/article.jhtml?id=r00820010627ggp01.htm&src=bc
http://www.businessweek.com/
http://interactive.sei.cmu.edu/

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Chad Vawter, Ed Roman J2EE vs Microsoft.NET: A comparison of building XML-based
web services The Middleware Company, 2001 http://www.middleware-company.com

D. Vecchio, J. Sinur, J. Duggan Legacy Evolution: Not as Black and White as It Seems
TU-10-1478 Gartner Group, 24 February 2000 http://www.gartner.com

Richard Veryard Identifying Web Services Interact, CBDi Forum, February 2002
http://www.cbdiforum.com

Ben Wilson Chickens and turkeys migrate, but not necessarily in IT ANUBEX, February
2002 http://www.falconsoft.be

Legacy Value Legacy Value Restoration Cognizant Technology Solutions, White Paper,
November 2001 www.cognizant.com

Parallel Operation of Software: Is it a Desirable Transition Technique? Joint Financial
Management Improvement Program, July, 2001 http://www.jfmip.gov

Web Services Triple Tree Spotlight Report, February 15, 2002 http://www.triple-tree.com

 WebIT™ Web-Enabling of Legacy Applications Intercomp White Paper, August 2001
http://www.intercomp.com

 35

http://www.middleware-company.com/
http://www.gartner.com/
http://www.cbdi.com/
http://www.falconsoft.be/
http://www.cognizant.com/
http://www.jfmip.gov/
http://www.triple-tree.com/
http://www.intercomp.com/

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

Glossary of terms and abbreviations

Application
container

Components under the J2EE standard are grouped into and run
inside application containers. (Components are files of code that
are accessed by the application at runtime). A container provides
runtime support for the components and provides a unified view
of the J2EE services. Each type of component (e.g., EJB, JSP,
servlet, applet, or client application) has container specific to that
component type. Under .NET, components run within the context
of the Common Language Runtime (CLR). The CLR provides
many of the same functions as the J2EE container.

Application
mining

Application mining is used to extract business rules from legacy
code.

B2B Business to Business.

Copybook A common piece of source code designed to be copied into many
source programs. Commonly used by COBOL programmers.
Referred to as ‘libraries’ in IBM OS, and implemented as
‘partitioned data sets’.

EJB Enterprise Server Beans. Beans are individual J2EE components
that provide business functionality. They can manage their own
persistence or delegate this function to its container. There are 3
types: Session beans, entity beans, and message beans. The
EJB container (frequently referred to as the application server)
provides transaction management, security, remoting (i.e., calling
distributed objects), object life cycle, and connection pooling
services to the beans. Beans are automatically pooled by the
container when appropriate, eliminating the need for constant
creating and destroying.

IDE Integrated Development Environment. Visual Studio .NET is a
notable example - it eliminates the most time-consuming and
difficult tasks from development. A variety of IDEs support the
J2EE platform. IBM’s Visual Age and BEA’s WebGain Studio are
two IDEs, and Borland JBuilder is also used.

IIOP Internet Inter-ORB Protocol. Protocol that enables CORBA over
the Internet. Enables browsers and servers to exchange integers,
arrays and more complex objects, unlike HTTP, which only
supports text transmission.

IO Input-output.

ISAM Indexed Sequential Access Method.

Java A set of technologies for creating and running software programs.
A trade mark of Sun.

 36

COPYRIGHT CLUB DE INVESTIGACIÓN TECNOLÓGICA  2002 LEGACY TRANSFORMATION

JSP Java Server Page.

JCA Java Connector Architecture. It is designed to connect J2EE
environments synchronously to applications and transaction
processors. It is an adaptation of IBM’s Common Connector
Framework.

JCL Job Control Language. A set of statements controlling the
execution of a series of jobs.

J2EE Java 2 Platform, Enterprise Edition. It enables large-scale Java
applications to be created consistently in a distributed
environment. J2EE provides a container that manages
components, a set of specifications for how these components
operate, and a set of standard interfaces.

Legacy
application

A legacy application may be defined as any application based on
older technologies and hardware, such as mainframes, that
continues to provide core services to an organisation.

Logic-tracing A function of an IDE that tracks the execution of program code,
used for debugging.

MQ Message Queue. IBM’s WebSphere MQ (formerly MQSeries)
and Microsoft MSMQ allow messages to be sent from one
application or service to another with guaranteed delivery.

.NET .NET is not an acronym, but is usually capitalised. It refers to
Microsoft’s set of tools for applications development as well as
standards and a Web-based philosophy for all Microsoft’s
products and services. Current .NET implementations run on
Windows platforms.

Refactoring Restructuring program code to improve its maintainability,
readability, and so on.

SOAP Simplified Object Access Protocol. Web Services communication
protocol providing an XML-based format for transporting
messages and invoking services over the Internet.

XML Extensible Mark-up Language – Data format that can be read by
people and machines. Data values and meta-data are both
included in the data, to provide a self-describing syntax. Standard
published by World Wide Web Consortium.

Web Services A collection of business services or capabilities taken from single
or multiple applications that can be published to a network using
XML-based protocols, for access by other applications.

Wizard A utility in a program that outlines a series of sequential tasks to
set up a portion of the program.

Wrapping or
wrappers

Wrapping or wrappers allows access to legacy function from an
object-oriented environment. The object wrapper operates as a
called method of an object, and then uses a traditional procedure
call to execute an existing application function. It s a black box
approach that isolates the internal complexities of the legacy
programs. It can create longer-term maintenance problems.

 37

	Introduction
	
	Key issues addressed by the report
	Organisation of the report

	The Case for Legacy Transformation
	The Transformation Process
	
	Description of the process
	Automating the transformation process
	Overcoming inherent difficulties in transformation
	Examples of tools
	Implications

	Developing a Strategy for Legacy Transformation
	
	The charter of objectives
	Portfolio assessment
	Transform, replace, rewrite, or re-use?
	Which target platform?

	The Transformation Project
	
	Outline of a project approach
	Addressing the specific features of transformation projects
	The need for an internal champion

	Building the Business Case
	
	“If it ain’t broke, don’t fix it”
	Explaining software life-cycle investment
	Cost, Value and Affordability
	Tip of the iceberg
	Bringing it all together

	The Supply Situation
	
	Understanding the supply-side

	Outlook for Legacy Transformation

