
How to select an automatic VB to .NET migration product

Software migration products are complex technologies that need to strike the right balance

automation and quality of the generated code. At one side of the migration products range there are

compilers, which takes source code and translates it 100% automatically to a different language; a

language that it is not fit for “human consumption” and cannot be easily maintained. On the other

side, there is the full manual upgrade, in which an engineer only optimizes with respect to code

quality at the expense of a very high migration cost.

In the specific case of Visual Basic 6 migrations, customers have several choices depending on

which optimization is required. This article shows the criteria that should be analyzed when

considering the acquisition of a VB6 migration product.

Code Quality: is it really .NET?

The .NET code generated by the migration product should allow the resulting application to evolve

and scale up without any limitations. The end result should be, as much as possible, native .NET

code, in order to take advantage of the new platform features. This way, a trained .NET programmer

should not find any difficulty in understanding and maintaining the generated code.

The migration philosophy behind the Visual Basic Upgrade Companion (VBUC) is precisely to

produce .NET native code and take advantage of the new technologies available in the .NET

Framework. Here are some examples of features where the VBUC generates higher-quality, .NET

like code than other competitors:

• Database access technologies are converted to ADO.NET.

• Most of the common ActiveX used in VB6 are replaced by .NET native components.

• Traditional VB6 error handling is replaced to structured .NET Error Handling (Try … Catch)

• Type inference : The Visual Basic Upgrade Companion performs an extensive data

analysis to infer the most appropriate data types for variables, parameters, and return

values, avoiding the use of generic data types like Variant and Object.

• Code Refactoring: The Visual Basic Upgrade Companion performs special refactoring over

the resulting .NET code to make it more natural to a .NET developer.

http://www.vbtonet.com/advanced-code-refactoring/
http://www.vbtonet.com/typing-mechanism/
http://www.vbtonet.com/error-handling-transformation/error-handling-routines-to-net-features/
http://www.vbtonet.com/optional-third-party-library-mappings/
http://www.vbtonet.com/legacy-data-access-to-net/

• The migrated application can be converted to Silverlight and accessed through the Internet

using a Web Browser. This is possible thanks to the partnership between ArtinSoft and

Gixmox.

Unlike the VBUC, other tools in the market generate code that looks like the original VB6 source

code with most of its keywords replaced by the constructions contained in a runtime support library.

The maintenance over the resulting code is complex, and it looks and feels more like VB6 than .NET.

As a result, the migrated application also faces lots of maintainability challenges, like the presence of

proprietary graphical controls that can’t be mixed with .NET intrinsic controls.

Use of Proprietary Runtime and how it increases long term risk

A simple way of building a highly automated migration product is to rely on an extensive runtime

library to reduce the gap between Visual Basic 6.0 features and .NET features. That is, at its core,

re-implementing VB6 in .NET. However, this approach will release you from one legacy environment

only to lock you in with a proprietary runtime supported by a smaller company. On the other hand,

as mentioned above, the migration philosophy behind the Visual Basic Upgrade Companion is to

produce native .NET code with no dependency on the legacy platform or any third-party runtime, so

that customers can effectively take control of the evolutionary path of the migrated applications

without any restrictions. To ensure this, the VBUC employs very complex transformations and

heuristics in order to generate VB.NET or C# code with the direct support of the .NET framework.

Only when the difference in functionality is too high due to functionality differences or code

readability and maintenance issues, the VBUC makes use of a small set of helper classes that are

distributed, along with their source code, with the migrated code, creating no dependency on

ArtinSoft.

So using a large runtime might be an option to speed up the migration process, and can lower the

initial cost of the VB to .NET migration (though in the long term it will always be more expensive to

maintain a hybrid application on .NET), but if you decide to go with this approach make sure that it:

• Does not limit the future scalability of the migrated application: other VB to .NET

migration tools generates one class per each VB6 control, so that every single control used

in the migrated application is an instance to a class located in the proprietary library. All the

buttons, control arrays, text boxes, everything, is referenced to that library’s classes. Also

the generated forms inherit from classes located in the proprietary runtime and not the native

.NET Form. Making new developments upon this type of code will definitely compromise the

final application’s maintainability. For example, dropping these runtime controls onto a

regular VB.NET form causes either a design-time or a runtime error. Another issue with

some of these proprietary runtimes is the incompatibility with some Visual Studio tools. For

example, if you use the Test Wizard included in Visual Studio 2008 to create unit tests for a

VB.NET project that was generated using one of these runtimes, you will get a Visual Studio

exception.

• Provides full source code and documentation, so you don’t have to rely on the
vendor: If you decide to use a runtime approach, at least make sure that you can get the

complete source code and documentation of this runtime, along with the rights to modify it

without any limitations, so that your release cycles don’t have to depend on the vendor’s,

and the risks associated with it.

• Doesn’t have royalties of any kind associated with it: make sure that you don’t have to

pay any fee for maintenance for this runtime, or royalties for the distribution of the

applications in the future. Even if there are claims it will be free, there are always risks, like

another company purchasing the original vendor, or simply going out of business.

Extensible and Customizable

One important characteristic of a migration product is the ability to be extensible and customizable.

This capability gives you the following benefits, among others:

• Having control over the generated .NET code (for example, migrating the error handling

using On Error … Goto or using Try … Catch)

• Replacing third party controls with .NET native components

• Implementing particular programming patterns used by your organization

• Increasing automation by changing the behavior of the tool to perform repetitive changes

automatically.

The Visual Basic Upgrade Companion provides the following mechanisms to customize the

generated code:

• Migration Profiles : the end user has control over which features and transformations to use

on a particular migration through the concept of Migration Profiles. These profiles improve

the quality of the generated code, providing precise control over the transformations. For

http://www.vbtonet.com/vbuc-customization/migration-profiles/
http://www.vbtonet.com/vbuc-customization/migration-profiles/

example, migrating a specific third party component to a native .NET equivalent, but leaving

another one through COM Interop. The Visual Basic Upgrade Companion provides 11 Code

Conversion Rules, and supports over 44 different ActiveX libraries.

• Custom Maps : the Visual Basic Upgrade Companion includes a “mapping” mechanism that

allows defining the transformation of one element of a library used in the VB6 code to a

member of an assembly in .NET. This allows the customer to identify and implement

timesaving transformations, and when combined with the implementation of an adapter for

the .NET component, can speed up the migration process dramatically.

• Customizations : ArtinSoft’s VBUC development team can also include additional rules in

the VBUC that require more context than a simple mapping, such as error handling patterns,

architectural modifications, and others. These customizations are useful to:

o Modify the generated code to fulfill specific customer needs (e.g. company coding

standards, application architecture changes, ActiveX replacement, etc.)

o Increase automation to:

 Reduce manual intervention to fix the resulting code

 Reduce compilation and runtime errors of the migrated code

More information about these customizations mechanisms can be found at

http://www.vbtonet.com/vbuc-customization/

Code Comments as Customizable mechanism and re-migration capability

Other migration tools in the market use an approach where the user has to insert commented lines

(something similar to compiler directives) in the original Visual Basic 6.0 source code. These

commented lines are used by the migration tool to identify places where the resulting code needs to

be changed in some manner.

Years ago, ArtinSoft used this approach in earlier migration tools and identified the following issues:

1. Requires an important effort: this approach (inserting comment lines into the original

source code) can be used in very small migration projects without creating any unnecessary

overhead to the overall migration process, but when the situation is taken to a larger scale,

the amount of manual insertions of these source code comments will raise the cost of the

migration project significantly. Some kind of transformations may require a lot of comment

http://www.vbtonet.com/vbuc-customization/migration-profiles/
http://www.vbtonet.com/vbuc-customization/customizations/
http://www.vbtonet.com/vbuc-customization/custom-maps/

insertions in the original Visual Basic 6.0 source code. For example, if you want to convert all

the VB6 error handling mechanism (On Error … Goto) to the .NET structured error handing

(Try … Catch) you will need to insert a comment for each transformation. On a large project,

this means that you may have to insert thousands of comments, and a comment into the
original Visual Basic 6.0 code requires a similar effort that a manual change in the
migrated code. On the other hand, the VBUC applies this kind on transformation simply by

switching on the On Error Handling feature in the Migration Profile.

2. Logistic problems for re-migration capability: another common use for inserting

comment lines into the original source code is to provide a re-migration alternative. This

means that the development team of the application can continue making maintenance

changes onto the source VB6 code while the migration team is upgrading the application

to .NET simultaneously. However, this strategy requires that the migration team uses the

same base code that the development team is working on. This requirement is not always

feasible in large companies, especially because of information security issues. Another

problem is that the migration team will be working with an unstable version of the source

code, increasing the testing cost of the upgrade project. In order to provide re-migration

capability and avoid these issues, the VBUC team uses a proven, well-structured continuous

migration methodology. More information about this continuous migration methodology can

be found at http://www.vbtonet.com/vbuc-customization/perform-continuos-migration/

Automation

The level of automation is an important characteristic of a migration product because this will have a

direct impact upon the cost of your migration project. There are some migration tools out there with a

very low level of automation, and others that perform better but will generate low quality code and

with the use of a huge runtime, as mentioned before in the section ”Code Quality: is it really .NET”.

The secret between automation and quality is balance, aiming for a high level of automation but

without sacrificing the quality of the generated .NET native code that takes advantage of new .NET

technologies. To evaluate the level of automation and the quality of the code generated by the Visual

Basic Upgrade Companion you can easily get a trial version and test it on your own code, and if you

need some assistance during the evaluation just don’t hesitate to contact us.

Support /Company

http://www.artinsoft.com/ms_contactus.aspx
http://www.artinsoft.com/visual-basic-upgrade-companion-trials.aspx
http://www.vbtonet.com/vbuc-customization/perform-continuos-migration/

Finally, like with any purchase, it is always important to check on the level of expertise, available

support and credentials of the vendor. Some competitors only have a small, static webpage that

doesn’t even provide a basic company profile, looking more like a flight-by-night operation, while

others have more information but none or just a few customer referrals specific for their migration

solutions. ArtinSoft has been exclusively on the software migration business for more than 15 years,

and has a proven track record of dozens of satisfied customers worldwide, including lots of Fortune

100 companies, representing tens of millions of lines of code successfully migrated to .NET.

All this is reflected in the design of our products, where our R&D department frequently releases new

versions incorporating the experience gathered from real world migration projects and the

requirements requested by actual customers, rather than relying on theoretic research that

commonly yields useless, “we-did-it-first” features. And besides its powerful migration products,

ArtinSoft provides extensive documentation and a full range of comprehensive, expert consulting

services and dedicated support that will ensure that your overall experience will be as smooth as

possible.

http://www.artinsoft.com/so_home.aspx
http://www.artinsoft.com/so_home.aspx
http://www.vbtonet.com/
http://www.artinsoft.com/pr_home.aspx
http://www.artinsoft.com/ab_customers.aspx
http://www.artinsoft.com/ab_home.aspx

	How to select an automatic VB to .NET migration product
	Code Quality: is it really .NET?
	Use of Proprietary Runtime and how it increases long term risk
	Extensible and Customizable
	Code Comments as Customizable mechanism and re-migration capability
	Automation
	Support /Company

