

Accelerating J2EE to .NET Migrations With the JLCA

Companion: A Sample Application

Introduction

The Java Language Conversion Assistant (JLCA), developed by ArtinSoft and included within

Microsoft’s Visual Studio, is an automated code migration product that accelerates the conversion of

existing Java/J2EE applications into Microsoft Visual C# under .NET. ArtinSoft’s new JLCA

Companion allows users to extend the functionality delivered by the JCLA by adding their own

transformation rules, also known as custom mappings, to the JLCA translation dictionary. These

rules can either add support for new code elements or redefine existing transformations already

bundled within the JLCA.

This document will illustrate the advantages of using the JLCA Companion in the process of

converting a real Java application. We will first use the standard JLCA to transform the application,

showing with code snippets the outcome of the process. We will then show how the transformation

results are significantly improved by using the JLCA Companion – thus reducing your developing

time and increasing your productivity.

Overview

Among the major complications of any migration project are handling third party components (TPC)

or J2EE packages that the JLCA does not automatically convert. This paper will illustrate how the

JLCA Companion enables you to extend the functionality of the JLCA version 3.0 to address these

issues. To illustrate how the JLCA Companion works, we are going to extend the JLCA to enable

automated migration of the java.util.zip package.

ZIP is one of the most common and well-known file formats. ZIP files are data containers that store

one or more files in a compressed form. This format is widely used over the Internet because it

saves both disk space and bandwidth. A compression rate as high as 90% can be achieved by using

ZIP files. ZIP algorithms for compression and decompression are freely available in the zlib library

(http://www.gzip.org/zlib).

The Java API specification includes support for the ZIP format. The java.util.zip package provides all

the necessary classes to compress and decompress data. Currently, the Microsoft .NET Framework

does not include equivalent classes for manipulating ZIP files. However, there are third-party

products available to handle this need: The #ziplib (SharpZipLib) is a port of the zlib ZIP library,

written entirely in C# for the .NET platform. Its license allows developers to include this library in

commercial, closed-source applications. This product can be found here:

http://www.icsharpcode.net/OpenSource/SharpZipLib/default.asp. You will need to download this

library if you want to run the sample code.

In the first section of this document we will describe ZipUtil, which is a simple custom Java

application that manages ZIP files. In the following section, we will show in detail the migration of this

application to .NET using the JLCA. We will then illustrate the actual migration improvements gained

by using the JLCA Companion. The final section compares the transformation both with and without

the JLCA Companion and summarizes the key benefits.

To download the code of this sample, get the compressed "zip" file with the code

The ZipUtil application

ZipUtil is a working Java application used as an example in this paper to contrast the migration

process using the JLCA alone and with the JLCA Companion. It is a simple Java command-line

application for managing ZIP files. You can list the contents of a ZIP file, unzip the entries, or

compress the files within a directory into a new ZIP file.

ZipUtil Usage

 1. List the contents of a zip file: java ZipUitl /list filename.zip

 2. Unzip a file: java ZipUitl /unzip filename.zip

 3. Zip a directory: java ZipUitl /zip directory

Note: You need JDK 1.3.x or later in order to run this application.

The Java source code for ZipUtil can be found in the folder "Zip Sample/Source Code" inside the

"Zip Sample.zip" file.

The application contains two classes encapsulating the zip functionality:

• The ZipFileExtended class extends java.util.zip.ZipFile. The method toString() was overloaded

so it returns the contents of the file. The method unZip() was added for performing the full file

decompression. It creates the required directories and files.

• The ZipOutExtended class extends java.util.zip.ZipOutputStream. This class overloads the

constructor; it receives a directory name and creates a ZIP file using the directory name. The

zipDir() method was added to compress the directory represented by the current object.

Application architecture

Below is a diagram of the ZipUtil application architecture. The base packages used are java.io and

java.util. In addition, the java.util sub packages java.util.zip and java.util.jar are core elements of the

Zip Sample.

Conversion using the JLCA

We will now undertake conversion of the ZipUtil Java application to C# using the Java Language

Conversion Assistant (JLCA) included within Microsoft Visual Studio.NET. By illustrating the

transformation process using the key elements class, constructor, method and property, you will

notice that there is a need for manual user intervention in order to make the code fully functional.

Migrating with the JLCA alone successfully converts all language elements, and most of the java.io

elements used in the application. However, since there is no native support for ZIP in .NET, the

JLCA is unable to perform code transformations for classes using the java.util.zip package. This

means that you will need to work around such code to achieve functional equivalence.

The ZIP elements are reported as “compile errors”. For example, here is the conversion report

produced by the JLCA for the class ZipFileExtended:

Conversion Report

Conversion Report

Each of these issues would require manual changes before the migrated application will work – a

process that can require considerable time and effort, and is error-prone. By adding the JLCA

Companion, many of these errors can be automatically eliminated.

Class Migration

The following example shows how the JLCA converts the java.util.zip.ZipFile.

Java Code

public class ZipFileExtended extends java.util.zip.ZipFile{

}

JLCA Generated C# Code

//UPGRADE_ISSUE: Class 'java.util.zip.ZipFile'

//was not converted.

public class ZipFileExtended:java.util.zip.ZipFile{

}

Because the class is not supported by the JLCA, it is not migrated and a message is generated.

Constructor Transformation

This sample shows how the JLCA converts the ZipEntry constructor:

Java Code

new ZipEntry(path);

JLCA Generated C# Code

//UPGRADE_ISSUE:

//Constructor 'java.util.zip.ZipEntry.ZipEntry'

//was not converted.

new ZipEntry(path);

The constructor is not transformed by the JLCA; you would need to work around the code in order to

obtain functional equivalence.

Method conversion

Here is code that illustrates how the JLCA processes the putNextEntry method:

Java Code

this.putNextEntry(new ZipEntry(path));

JLCA Generated C# Code

//UPGRADE_ISSUE: Method 'java.util.zip.ZipOutputStream.putNextEntry'

//was not converted.

//UPGRADE_ISSUE: Constructor 'java.util.zip.ZipEntry.ZipEntry'

//was not converted.

this.putNextEntry(new ZipEntry(path));

The method is not migrated as there is no support for ZIP in .NET. You would need to manually alter

the code in order to make it work.

Conversion using the JLCA Companion The JLCA Companion can significantly improve the

transformation results of the JLCA conversion process. As a consequence, you are able to reduce

your development time and increase your productivity. We will now show the translation of the ZipUtil

Java application using the JLCA Companion. By illustrating the transformation process using the key

elements class, constructor, method and property, you will see that the resulting code is fully

functional and does not require additional user manipulation. In a typical JLCA Companion project,

which behaves like any other project inside the Visual Studio.NET IDE, you can specify classes,

methods and field conversions. In addition, you can specify error messages and references to

different components. This is accomplished by using Map Files and Definition Files, which are items

inside this type of project.

Field translation

This code shows how the JLCA converts getName to a property:

Java Code

ZipEntry e = ((ZipEntry)entries.nextElement());

String fileName = e.getName();

JLCA Generated C# Code

//UPGRADE_ISSUE: Class 'java.util.zip.ZipEntry' was not converted.

//UPGRADE_TODO: Method 'java.util.Enumeration.nextElement'

//was converted to 'System.Collections.IEnumerator.Current'

// which has a different behavior.

ZipEntry e = ((ZipEntry) entries.Current);

//UPGRADE_ISSUE: Method 'java.util.zip.ZipEntry.getName' was not converted.

System.String fileName = e.getName();

As before, because there is no support for getName inside the JLCA, you would need to manually

modify the code in order to make it work.

Conversion using the JLCA Companion

The JLCA Companion can significantly improve the transformation results of the JLCA conversion

process. As a consequence, you are able to reduce your development time and increase your

productivity.

We will now show the translation of the ZipUtil Java application using the JLCA Companion. By

illustrating the transformation process using the key elements class, constructor, method and

property, you will see that the resulting code is fully functional and does not require additional user

manipulation. In a typical JLCA Companion project, which behaves like any other project inside the

Visual Studio.NET IDE, you can specify classes, methods and field conversions.

In addition, you can specify error messages and references to different components. This is

accomplished by using Map Files and Definition Files, which are items inside this type of project.

Map Files

Contain the equivalences or mappings that are to be applied in a conversion. The structure of a Map

File has three main sections. The first is used to import your Definition Files (.def). The core of this

file is the one enclosed by the package and endpackagekeywords. The last section is related to

class definitions. These definitions are enclosed by the class and endclass keywords. You can

specify as many class definitions as required. Class definitions contain items such as constructors,

properties/fields and methods.

Definition Files

Contain elements that are to be referenced by a Map File. Inside these elements, you define

messages and references to ActiveX components, COM objects and Assemblies.

Nearly 100% of the Java ZIP classes can be migrated to use the third-party #ziplib library. By using

the JLCA Companion, you can specify a mapping that will automatically convert Java ZIP classes to

the #ziplib library to achieve ZIP functionality. Next, we will learn how to use the JLCA Companion in

order to extend the migration coverage of the JLCA.

The ZipMaps Project

ZipMaps is a JLCA Companion project containing user-defined transformation rules, also called

mappings, for the java.util.zip and java.util.jar packages. (You can find the source code for the

ZipMaps project inside the “Zip Sample.zip” file, within the folder “Zip Sample\ZipMaps”.) These

mappings are patterns that define how to convert one Java object to a C# object. Within a JLCA

Companion project you will find Map Files and Definition Files. Since both the Java and C# versions

implement the same library (zlib), we can map almost all the members using the JLCA Companion.

The files java.util.zip.emap and java.util.jar.emap contain all Java members and the corresponding

#ziplib equivalences.

Looking at the new conversion report, you can see that the ZIP-related compile errors have now

been resolved:

Conversion Report

Conversion Report

You will find the converted application in the folder "Zip Sample\Migrated Code\Using Companion",

and can open the project to see the readability of the converted code. If you compile and build the

project, you will be able to run the ZipUtil .NET version. We now have all the functionality of the

original Java application within a .NET executable. Almost no manual changes were needed, and

usage of the application is identical to the Java version.

There are several important concepts you need to understand when creating member mappings

(constructors, methods and fields). Transformation rules are created with a structure that uses

patterns, which are not subject to a specific string value, but rather the form of the mold. Inside them

you use Binding Names as placeholders. They are visual representations of elements to be

transformed. This work scheme allows portions of the source expression to be manipulated

individually. The following are placeholders used in this sample: a, b and p. In other words, the string

values used for a, b and parameter identifiers p, p1...pn represent pattern variables.

Class conversion

A class map is defined using the class keyword, used to define the start of a class scope of member

mappings (constructors, methods and fields), and endclass, which indicates the end of a class (end

of a class scope of mappings). In addition to these keywords, -> is used to indicate correspondence.

The following example shows how the JLCA converts the java.util.zip.ZipFile using the mapping

created with the JLCA Companion:

Java Code

public class ZipFileExtended extends java.util.zip.ZipFile{

}

JLCA with JLCA Companion

Map Code

class ZipInputStream -> ICSharpCode.SharpZipLib.Zip.ZipInputStream

...

endclass

C# Code

public class ZipFileExtended:ICSharpCode.SharpZipLib.Zip.ZipFile

{

}

Using the JLCA Companion, the class java.util.zip.ZipFile will be automatically converted to

ICSharpCode.SharpZipLib.Zip.ZipFile whenever a reference to it is found in your code. The class

conversion is performed flawlessly, there is no need for manual intervention in the code; and it will

compile and achieve functional equivalence.

Constructor transformation

You create a constructor map using the member keyword, which is used to define the start of a

member scope; and endmember, which is used to indicate the end of the member mapping. In

addition to these keywords, -> is used to indicate correspondence.

This following example shows how the JLCA processes the ZipEntry constructor using the mapping

created with the JLCA Companion:

Java Code

new ZipEntry(path);

JLCA with JLCA Companion

Map Code

member ZipEntry

b(p:java.util.zip.ZipEntry) -> new ICSharpCode.SharpZipLib.Zip.ZipEntry(p);

b(p:java.lang.String) -> new ICSharpCode.SharpZipLib.Zip.ZipEntry(p);

endmember

The following are the matching values of the code with their pattern Binding Variables:

b matches ZipEntry: since it is the element we are mapping, there is no need to use it in the mapping

body. p matches path: the match here is performed on the second overload since path is a

java.lang.String type.

C# Code

new ICSharpCode.SharpZipLib.Zip.ZipEntry(path);

The constructor ZipEntry will be automatically converted to the constructor

ICSharpCode.SharpZipLib.Zip.ZipEntry every time it is found in your code. In addition, the object

path replaces the Binding Name p since it functions as a placeholder. The constructor transformation

is performed perfectly; there is no need to work around the code as it compiles and achieves

functional equivalence.

Method migration

A method map is created using the member keyword, which is used to delineate the start of a

member scope, and endmember, which is used to define the end of the member mapping. In

addition to these keywords, -> is used to indicate correspondence.

The following example illustrates how the JLCA processes the putNextEntry method using the

mapping created with the JLCA Companion:

Java Code

this.putNextEntry(new ZipEntry(path));

JLCA with JLCA Companion

Map Code

member putNextEntry

a.b(p:java.util.zip.ZipEntry) ->

a.PutNextEntry(p);

endmember

C# Code

this.PutNextEntry(new ICSharpCode.SharpZipLib.Zip.ZipEntry(path));

The method putNextEntry will be automatically converted to the method PutNextEntry whenever a

call to the Java method is found in your code. It is converted perfectly; the code will not generate

compile errors.

Field translation

These types of map definitions consist of two parts: getvalue and setvalue. A field map is defined

with the member keyword, used to define the start of a member scope, and endmember to indicate

the end of the member mapping. In addition, -> is used to indicate correspondence.

The following code illustrates the JLCA converting the member getName and setName to the

property Name using the mapping created with the JLCA Companion:

Java Code

ZipEntry e = ((ZipEntry)entries.nextElement());

String fileName = e.getName();

JLCA with JLCA Companion

Map Code

member getName

a.b() -> a.Name;

endmember

...

member setName

a.b() = c -> a.Name = c;

endmember

The following are the matching values of the code with their pattern Binding Variables:

a matches e: here we have access to the object instance whose method is being converted by the a

placeholder. b matches getName: since it is the element we are mapping, there is no need to use it

in the mapping body.

C# Code

//UPGRADE_TODO: Method 'java.util.Enumeration.nextElement' was converted to

'System.Collections.IEnumerator.Current' which has a different behavior.

ICSharpCode.SharpZipLib.Zip.ZipEntry e = ((ICSharpCode.SharpZipLib.Zip.ZipEntry)

entries.Current);

System.String fileName = e.Name;

getName will be automatically converted to the property Name whenever it is used in your Java

code. The conversion leaves no errors so there is no need for any manual coding.

EWI Processing

An EWI (Error, Warning, and Issue) is a message that is printed in the target code. For example, if

there is a different behavior in a method and there is a need to perform some manual changes you

could print an EWI as a Warning to remind the user there is work to be done. The definition language

allows the declaration of EWIs for usage in map definitions. The keyword ewi is used to create an

EWI. This code shows how to process EWIs with the JLCA Companion:

Java Code

for (Enumeration entries = this.entries(); entries.hasMoreElements();) {

...

}

JLCA with JLCA Companion

Code inside definition file

ewi DIFF_RETURN_VAL : " CUSTOM_TODO: This element returns a different value.";

Map Code

using "declarations.def";

...

member entries

a.b() -> begin

printwarning(DIFF_RETURN_VAL);

a.GetEnumerator();

end

endmember ...

C# Code

//CUSTOM_TODO: This element returns a different value.

//UPGRADE_TODO: Method 'java.util.Enumeration.hasMoreElements' was converted to

'System.Collections.IEnumerator.MoveNext' which has a different behavior.

for (System.Collections.IEnumerator entries = this.GetEnumerator(); entries.MoveNext();){

...

}

The conversion process issues the EWI whenever the JLCA encounters the element where the EWI

was defined. This means that every time the member entries are converted the EWI

DIFF_RETURN_VAL will be printed.

References manipulation

It is possible to define references to external .NET assemblies to be added to the target language of

the migrated project. Below is a case of an Assembly definition inside a definition file (in this sample

is called declarations.def):

JLCA with JLCA Companion

Code inside definition file

reference SHARPZIPLIB : "ICSharpCode.SharpZipLib";

Map Code

using "declarations.def";

package java.util.jar

addref SHARPZIPLIB;

...

endpackage

When a reference is found in your mappings the JLCA Companion will add it to the converted project

References Section, as shown below:

References Section

Comparison of transformations

Here are the contrasting results of the two conversion processes: one using only the base JLCA, and

the other using the JLCA with ArtinSoft’s JLCA Companion.

The following diagram shows the migration course of action:

As shown, all elements inside the Java Language Box are translated to elements inside the C#

Language Box using the JLCA. In addition, the items inside the java.io and java.util packages are

also converted using also the base JLCA. However, the java.util sub packages java.util.jar and

java.util.zip are transformed with the help of the JLCA Companion.

Class conversion result

The following diagram illustrates the behavior of the JLCA with and without the JLCA Companion

when converting Classes:

Java Code

public class ZipFileExtended extends java.util.zip.ZipFile{

}

JLCA C# Code

//UPGRADE_ISSUE: Class 'java.util.zip.ZipFile' was not converted.

public class ZipFileExtended :

java.util.zip.ZipFile{

}

The C# code generated by the base JLCA contains compile errors and requires manual user

intervention.

JLCA with JLCA Companion C# Code

public class ZipFileExtended : ICSharpCode.SharpZipLib.Zip.ZipFile{

}

The C# code generated by the JLCA with the JLCA Companion is flawless and does not require

manual intervention.

Constructor transformation outcome

The following extract illustrates the performance of the conversion tool with and without the JLCA

Companion when migrating constructors:

Java Code

new ZipEntry(path);

JLCA C# Code

//UPGRADE_ISSUE: Constructor 'java.util.zip.ZipEntry.ZipEntry' was not converted.

new ZipEntry(path);

The JLCA C# Code contains build errors and requires manual changes.

JLCA with JLCA Companion C# Code

new ICSharpCode.SharpZipLib.Zip.ZipEntry(path);

The JLCA with JLCA Companion C# Code is error-free and functionally equivalent.

Method migration comparison

Next we will compare the actions of the JLCA with and without the JLCA Companion when

translating methods:

Java Code

this.putNextEntry(new ZipEntry(path));

JLCA C# Code

//UPGRADE_ISSUE: Method 'java.util.zip.ZipOutputStream.putNextEntry' was not converted.

//UPGRADE_ISSUE: Constructor 'java.util.zip.ZipEntry.ZipEntry' was not converted.

this.putNextEntry(new ZipEntry(path));

The JLCA C# Code contains errors and requires a manual workaround.

JLCA with JLCA Companion C# Code

this.PutNextEntry(new ICSharpCode.SharpZipLib.Zip.ZipEntry(path));

The JLCA with JLCA Companion C# Code is functionally equivalent to the source code.

Field translation end result

The following example demonstrates the process of the JLCA conversion tool with and without the

JLCA Companion when converting C# properties.

Java Code

ZipEntry e = ((ZipEntry)entries.nextElement());

String fileName = e.getName();

JLCA C# Code

//UPGRADE_ISSUE: Class 'java.util.zip.ZipEntry' was not converted.

//UPGRADE_TODO: Method 'java.util.Enumeration.nextElement' was converted to

'System.Collections.IEnumerator.Current' which has a different behavior.

ZipEntry e = ((ZipEntry) entries.Current);

//UPGRADE_ISSUE: Method 'java.util.zip.ZipEntry.getName' was not converted.

System.String fileName = e.getName();

The JLCA C# Code was transformed with major correspondent issues.

JLCA with JLCA Companion C# Code

//UPGRADE_TODO: Method 'java.util.Enumeration.nextElement' was converted to

'System.Collections.IEnumerator.Current' which has a different behavior.

ICSharpCode.SharpZipLib.Zip.ZipEntry e = ((ICSharpCode.SharpZipLib.Zip.ZipEntry)

entries.Current);

System.String fileName = e.Name;

The code generated by JLCA with the JLCA Companion achieves functionality.

Summary

The JLCA Companion provides a powerful mechanism for extending the Java Language Conversion

Assistant coverage, as shown in the previous section. It also enables the generation of cleaner code

and reduces the number of messages displayed within the code. Finally, the JLCA Companion

allows you to use third-party libraries, or even your own implementations for migrating Java

packages with no equivalence in the .NET platform. This capability will help you speed the process

of moving real world Java applications to .NET.

The JLCA Companion projects you create can be used in later migration processes, saving time and

providing clean and clear target code.

Furthermore, using the JLCA Companion will increase your productivity and reduce the time required

to convert an application as most of the work is done automatically.

